Dorota Bielska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2104946/publications.pdf Version: 2024-02-01

DODOTA RIFLSKA

#	Article	IF	CITATIONS
1	lon distribution in iron oxide, zinc and manganese ferrite nanoparticles studied by XPS combined with argon gas cluster ion beam sputtering. Surfaces and Interfaces, 2022, 30, 101865.	3.0	3
2	One-Step Preparation of Highly Stable Copper–Zinc Ferrite Nanoparticles in Water Suitable for MRI Thermometry. Chemistry of Materials, 2022, 34, 4001-4018.	6.7	9
3	The effect of shell modification in iron oxide nanoparticles on electrical conductivity in polythiophene-based nanocomposites. Journal of Materials Chemistry C, 2021, 9, 10453-10461.	5.5	4
4	Effect of Thermal Treatment at Inert Atmosphere on Structural and Magnetic Properties of Non-stoichiometric Zinc Ferrite Nanoparticles. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 1632-1648.	2.2	7
5	Tailoring cellular microenvironments using scaffolds based on magnetically-responsive polymer brushes. Journal of Materials Chemistry B, 2020, 8, 10172-10181.	5.8	7
6	Biorefinery Approach for Aerogels. Polymers, 2020, 12, 2779.	4.5	31
7	Selective magnetometry of superparamagnetic iron oxide nanoparticles in liquids. Nanoscale, 2020, 12, 16420-16426.	5.6	7
8	Coacervate Thermoresponsive Polysaccharide Nanoparticles as Delivery System for Piroxicam. International Journal of Molecular Sciences, 2020, 21, 9664.	4.1	5
9	<p>Analysis of toxicity and anticancer activity of micelles of sodium alginate-curcumin</p> . International Journal of Nanomedicine, 2019, Volume 14, 7249-7262.	6.7	23
10	Blood-compatible, stable micelles of sodium alginate – Curcumin bioconjugate for anti-cancer applications. European Polymer Journal, 2019, 113, 208-219.	5.4	38
11	One-Step Synthesis of Long Term Stable Superparamagnetic Colloid of Zinc Ferrite Nanorods in Water. Materials, 2019, 12, 1048.	2.9	28
12	Homogeneous Embedding of Magnetic Nanoparticles into Polymer Brushes during Simultaneous Surface-Initiated Polymerization. Nanomaterials, 2019, 9, 456.	4.1	8
13	Enhanced hyperthermic properties of biocompatible zinc ferrite nanoparticles with a charged polysaccharide coating. Journal of Materials Chemistry B, 2019, 7, 2962-2973.	5.8	36
14	Gradient of zinc content in core–shell zinc ferrite nanoparticles – precise study on composition and magnetic properties. Physical Chemistry Chemical Physics, 2019, 21, 23473-23484.	2.8	9
15	Nanohydrogels Based on Self-Assembly of Cationic Pullulan and Anionic Dextran Derivatives for Efficient Delivery of Piroxicam. Pharmaceutics, 2019, 11, 622.	4.5	10
16	Halloysite-alkaline phosphatase system—A potential bioactive component of scaffold for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2019, 173, 1-8.	5.0	27
17	A Hybrid System for Magnetic Hyperthermia and Drug Delivery: SPION Functionalized by Curcumin Conjugate. Materials, 2018, 11, 2388.	2.9	30
18	Biocompatible and fluorescent superparamagnetic iron oxide nanoparticles with superior magnetic properties coated with charged polysaccharide derivatives. Colloids and Surfaces B: Biointerfaces, 2017, 150, 402-407.	5.0	32

Dorota Bielska

#	Article	IF	CITATIONS
19	Chitosan-based nanocapsules of core-shell architecture. Polimery, 2017, 62, 509-515.	0.7	5
20	Hybrid photosensitizer based on halloysite nanotubes for phenol-based pesticide photodegradation. Chemical Engineering Journal, 2015, 262, 125-132.	12.7	32
21	Alginate-hydroxypropylcellulose hydrogel microbeads for alkaline phosphatase encapsulation. Journal of Microencapsulation, 2014, 31, 68-76.	2.8	11
22	Self-organized thermo-responsive hydroxypropyl cellulose nanoparticles for curcumin delivery. European Polymer Journal, 2013, 49, 2485-2494.	5.4	38
23	A thermosensitive carrageenan-based polymer: Synthesis, characterization and interactions with a cationic surfactant. Carbohydrate Polymers, 2013, 96, 211-217.	10.2	11
24	Novel polymeric inhibitors of HCoV-NL63. Antiviral Research, 2013, 97, 112-121.	4.1	66
25	Curcumin-containing liposomes stabilized by thin layers of chitosan derivatives. Colloids and Surfaces B: Biointerfaces, 2013, 109, 307-316.	5.0	111
26	Hydroxypropylcellulose-graft-poly(N-isopropylacrylamide) — novel water-soluble copolymer with double thermoresponsivity. Polimery, 2013, 58, 696-702.	0.7	5
27	Modified Polysaccharides as Versatile Materials in Controlled Delivery of Antidegenerative Agents. Current Pharmaceutical Design, 2012, 18, 2518-2535.	1.9	7
28	Interaction of curcumin with lipid monolayers and liposomal bilayers. Colloids and Surfaces B: Biointerfaces, 2011, 88, 231-239.	5.0	116