Sunghak Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2104922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nature Materials, 2019, 18, 620-626.	27.5	501
2	Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nature Energy, 2017, 2, .	39.5	438
3	Organolead Halide Perovskites for Low Operating Voltage Multilevel Resistive Switching. Advanced Materials, 2016, 28, 6562-6567.	21.0	285
4	Tyrosine-mediated two-dimensional peptide assembly and its role as a bio-inspired catalytic scaffold. Nature Communications, 2014, 5, 3665.	12.8	98
5	Mechanistic Investigation of Biomass Oxidation Using Nickel Oxide Nanoparticles in a CO ₂ -Saturated Electrolyte for Paired Electrolysis. Journal of Physical Chemistry Letters, 2020, 11, 2941-2948.	4.6	88
6	Electronic interaction between transition metal single-atoms and anatase TiO ₂ boosts CO ₂ photoreduction with H ₂ O. Energy and Environmental Science, 2022, 15, 601-609.	30.8	88
7	Chemically Deposited Amorphous Zn-Doped NiFeO <i>_{<i>x</i>}</i> H <i>_{<i>y</i>}</i> for Enhanced Water Oxidation. ACS Catalysis, 2020, 10, 235-244.	11.2	86
8	Manganese oxide-based heterogeneous electrocatalysts for water oxidation. Energy and Environmental Science, 2020, 13, 2310-2340.	30.8	81
9	Revealing Structural Disorder in Hydrogenated Amorphous Silicon for a Low‣oss Photonic Platform at Visible Frequencies. Advanced Materials, 2021, 33, e2005893.	21.0	69
10	Uniform, Assembled 4 nm Mn ₃ O ₄ Nanoparticles as Efficient Water Oxidation Electrocatalysts at Neutral pH. Advanced Functional Materials, 2020, 30, 1910424.	14.9	55
11	Highly Selective Active Chlorine Generation Electrocatalyzed by Co ₃ O ₄ Nanoparticles: Mechanistic Investigation through in Situ Electrokinetic and Spectroscopic Analyses. Journal of Physical Chemistry Letters, 2019, 10, 1226-1233.	4.6	44
12	Capturing Manganese Oxide Intermediates in Electrochemical Water Oxidation at Neutral pH by In Situ Raman Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 4673-4681.	13.8	41
13	Nickelâ€Doping Effect on Mn ₃ O ₄ Nanoparticles for Electrochemical Water Oxidation under Neutral Condition. Small Methods, 2020, 4, 1900733.	8.6	36
14	Importance of Entropic Contribution to Electrochemical Water Oxidation Catalysis. ACS Energy Letters, 2019, 4, 1918-1929.	17.4	31
15	Mechanistic Investigation with Kinetic Parameters on Water Oxidation Catalyzed by Manganese Oxide Nanoparticle Film. ACS Sustainable Chemistry and Engineering, 2019, 7, 10595-10604.	6.7	28
16	Water Oxidation Mechanism for 3d Transition Metal Oxide Catalysts under Neutral Condition. Journal of the Korean Ceramic Society, 2017, 54, 1-8.	2.3	24
17	Importance of Interfacial Band Structure between the Substrate and Mn ₃ O ₄ Nanocatalysts during Electrochemical Water Oxidation. ACS Catalysis, 2020, 10, 1237-1245.	11.2	23
18	Spectroscopic capture of a low-spin Mn(IV)-oxo species in Ni–Mn3O4 nanoparticles during water oxidation catalysis. Nature Communications. 2020. 11. 5230.	12.8	21

Sunghak Park

#	Article	IF	CITATIONS
19	Metal Halide Perovskites for Solar Fuel Production and Photoreactions. Journal of Physical Chemistry Letters, 2021, 12, 8292-8301.	4.6	17
20	Biofunctionalized Ceramic with Self-Assembled Networks of Nanochannels. ACS Nano, 2015, 9, 4447-4457.	14.6	15
21	Methylamine Treated Mn3O4Nanoparticles as a Highly Efficient Water Oxidation Catalyst under Neutral Condition. ChemCatChem, 2019, 11, 1665-1672.	3.7	14
22	High-Density Single-Layer Coating of Gold Nanoparticles onto Multiple Substrates by Using an Intrinsically Disordered Protein of α-Synuclein for Nanoapplications. ACS Applied Materials & Interfaces, 2017, 9, 8519-8532.	8.0	8
23	A scalable Al–Ni alloy powder catalyst prepared by metallurgical microstructure control. Journal of Materials Chemistry A, 2020, 8, 11133-11140.	10.3	6
24	Capturing Manganese Oxide Intermediates in Electrochemical Water Oxidation at Neutral pH by In Situ Raman Spectroscopy. Angewandte Chemie, 2021, 133, 4723-4731.	2.0	5
25	Complex Impedance Analysis on Charge Accumulation Step of Mn ₃ O ₄ Nanoparticles during Water Oxidation. ACS Omega, 2021, 6, 18404-18413.	3.5	5
26	Probing the Structure and Binding Mode of EDTA on the Surface of Mn ₃ O ₄ Nanoparticles for Water Oxidation by Advanced Electron Paramagnetic Resonance Spectroscopy. Inorganic Chemistry, 2020, 59, 8846-8854.	4.0	2
27	Electrochemical cell in the brain. Nature Nanotechnology, 2020, 15, 625-626.	31.5	2
28	Engineered Dissolution for Better Electrocatalysts. CheM, 2021, 7, 20-22.	11.7	0