Hyuncheol Oh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2104900/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soluble DPP-4 up-regulates toll-like receptors and augments inflammatory reactions, which are ameliorated by vildagliptin or mannose-6-phosphate. Metabolism: Clinical and Experimental, 2016, 65, 89-101.	3.4	59
2	Inhibitory effects of alternaramide on inflammatory mediator expression through TLR4-MyD88-mediated inhibition of NF-D°B and MAPK pathway signaling in lipopolysaccharide-stimulated RAW264.7 and BV2 cells. Chemico-Biological Interactions, 2016, 244, 16-26.	4.0	55
3	Anti-neuroinflammatory effect of aurantiamide acetate from the marine fungus Aspergillus sp. SF-5921: Inhibition of NF-κB and MAPK pathways in lipopolysaccharide-induced mouse BV2 microglial cells. International Immunopharmacology, 2014, 23, 568-574.	3.8	53
4	Anti-Inflammatory Effects and Mechanisms of Action of Coussaric and Betulinic Acids Isolated from Diospyros kaki in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. Molecules, 2016, 21, 1206.	3.8	48
5	Tanzawaic acid derivatives from a marine isolate of Penicillium sp. (SF-6013) with anti-inflammatory and PTP1B inhibitory activities. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5787-5791.	2.2	45
6	Anti-neuroinflammatory effects of citreohybridonol involving TLR4-MyD88-mediated inhibition of NF-кB and MAPK signaling pathways in lipopolysaccharide-stimulated BV2 cells. Neurochemistry International, 2016, 95, 55-62.	3.8	45
7	Protein Tyrosine Phosphatase 1B Inhibitors from the Roots of Cudrania tricuspidata. Molecules, 2015, 20, 11173-11183.	3.8	42
8	4-Methoxydalbergione suppresses growth and induces apoptosis in human osteosarcoma cells <i>in vitro</i> and <i>in vivo</i> xenograft model through down-regulation of the JAK2/STAT3 pathway. Oncotarget, 2016, 7, 6960-6971.	1.8	39
9	Steppogenin Isolated from Cudrania tricuspidata Shows Antineuroinflammatory Effects via NF-κB and MAPK Pathways in LPS-Stimulated BV2 and Primary Rat Microglial Cells. Molecules, 2017, 22, 2130.	3.8	39
10	Anti-neuroinflammatory activities of indole alkaloids from kanjang (Korean fermented soy source) in lipopolysaccharide-induced BV2 microglial cells. Food Chemistry, 2016, 213, 69-75.	8.2	37
11	Anti-inflammatory effects of secondary metabolites isolated from the marine-derived fungal strain Penicillium sp. SF-5629. Archives of Pharmacal Research, 2017, 40, 328-337.	6.3	37
12	Anti-neuroinflammatory effects of tryptanthrin from Polygonum tinctorium Lour. in lipopolysaccharide-stimulated BV2 microglial cells. Archives of Pharmacal Research, 2018, 41, 419-430.	6.3	34
13	Anti-Inflammatory Effect of Methylpenicinoline from a Marine Isolate of Penicillium sp. (SF-5995): Inhibition of NF-κB and MAPK Pathways in Lipopolysaccharide-Induced RAW264.7 Macrophages and BV2 Microglia. Molecules, 2014, 19, 18073-18089.	3.8	33
14	New Cyclic Lipopeptides of the Iturin Class Produced by Saltern-Derived Bacillus sp. KCB14S006. Marine Drugs, 2016, 14, 72.	4.6	33
15	Isolation and structure determination of a new diketopiperazine dimer from marine-derived fungus <i>Aspergillus</i> sp. SF-5280. Natural Product Research, 2018, 32, 214-221.	1.8	33
16	Structures and biological activities of azaphilones produced by Penicillium sp. KCB11A109 from a ginseng field. Phytochemistry, 2016, 122, 154-164.	2.9	31
17	Anti-Inflammatory Effects of Curvularin-Type Metabolites from a Marine-Derived Fungal Strain Penicillium sp. SF-5859 in Lipopolysaccharide-Induced RAW264.7 Macrophages. Marine Drugs, 2017, 15, 282.	4.6	31
18	Dihydroisocoumarin Derivatives from Marine-Derived Fungal Isolates and Their Anti-inflammatory Effects in Lipopolysaccharide-Induced BV2 Microglia. Journal of Natural Products, 2015, 78, 2948-2955.	3.0	30

#	Article	IF	CITATIONS
19	Ulleungamides A and B, Modified α,β-Dehydropipecolic Acid Containing Cyclic Depsipeptides from <i>Streptomyces</i> sp. KCB13F003. Organic Letters, 2015, 17, 4046-4049.	4.6	30
20	Inhibitory Effects of Benzaldehyde Derivatives from the Marine Fungus Eurotium sp. SF-5989 on Inflammatory Mediators via the Induction of Heme Oxygenase-1 in Lipopolysaccharide-Stimulated RAW264.7 Macrophages. International Journal of Molecular Sciences, 2014, 15, 23749-23765.	4.1	29
21	Stachybotrysin, an Osteoclast Differentiation Inhibitor from the Marine-Derived Fungus Stachybotrys sp. KCB13F013. Journal of Natural Products, 2016, 79, 2703-2708.	3.0	28
22	Macrolide and phenolic metabolites from the marine-derived fungus Paraconiothyrium sp. VK-13 with anti-inflammatory activity. Journal of Antibiotics, 2018, 71, 826-830.	2.0	28
23	Anti-neuroinflammatory effects of sesquiterpenoids isolated from Nardostachys jatamansi. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 140-144.	2.2	27
24	Prenylated Flavonoids from Cudrania tricuspidata Suppress Lipopolysaccharide-Induced Neuroinflammatory Activities in BV2 Microglial Cells. International Journal of Molecular Sciences, 2016, 17, 255.	4.1	26
25	Haenamindole, an unusual diketopiperazine derivative from a marine-derived Penicillium sp. KCB12F005. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5398-5401.	2.2	25
26	Sulfuretin promotes osteoblastic differentiation in primary cultured osteoblasts and <i>in vivo</i> bone healing. Oncotarget, 2016, 7, 78320-78330.	1.8	25
27	Anti-inflammatory effect of desoxo-narchinol-A isolated from Nardostachys jatamansi against lipopolysaccharide. International Immunopharmacology, 2015, 29, 730-738.	3.8	24
28	A Prenylated Xanthone, Cudratricusxanthone A, Isolated from Cudrania tricuspidata Inhibits Lipopolysaccharide-Induced Neuroinflammation through Inhibition of NF-κB and p38 MAPK Pathways in BV2 Microglia. Molecules, 2016, 21, 1240.	3.8	24
29	Furanoaustinol and 7-acetoxydehydroaustinol: new meroterpenoids from a marine-derived fungal strain Penicillium sp. SF-5497. Journal of Antibiotics, 2018, 71, 557-563.	2.0	24
30	Bioactive α-Pyrone Derivatives from the Endolichenic Fungus <i>Dothideomycetes</i> sp. EL003334. Journal of Natural Products, 2018, 81, 1084-1088.	3.0	24
31	Isolation of Novel Sesquiterpeniods and Anti-neuroinflammatory Metabolites from Nardostachys jatamansi. Molecules, 2018, 23, 2367.	3.8	24
32	Anti-inflammatory coumarins from <i>Paramignya trimera</i> . Pharmaceutical Biology, 2017, 55, 1195-1201.	2.9	23
33	New ent-kauranes from the fruits of Annona glabra and their inhibitory nitric oxide production in LPS-stimulated RAW264.7 macrophages. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 254-258.	2.2	20
34	Anti-inflammatory phomalichenones from an endolichenic fungus Phoma sp Journal of Antibiotics, 2018, 71, 753-756.	2.0	20
35	Anti-Inflammatory and Protein Tyrosine Phosphatase 1B Inhibitory Metabolites from the Antarctic Marine-Derived Fungal Strain Penicillium glabrum SF-7123. Marine Drugs, 2020, 18, 247.	4.6	20
36	Anti-neuroinflammatory effect of 6,8,1′-tri- O -methylaverantin, a metabolite from a marine-derived fungal strain Aspergillus sp., via upregulation of heme oxygenase-1 in lipopolysaccharide-activated microglia. Neurochemistry International, 2018, 113, 8-22.	3.8	19

#	Article	IF	CITATIONS
37	Cycloexpansamines A and B: spiroindolinone alkaloids from a marine isolate of Penicillium sp. (SF-5292). Journal of Antibiotics, 2015, 68, 715-718.	2.0	18
38	Viridicatol from Marine-derived Fungal Strain <i>Penicillium</i> sp. SF-5295 Exerts Anti-inflammatory Effects through Inhibiting NF-κB Signaling Pathway on Lipopolysaccharide-induced RAW264.7 and BV2 Cells. Natural Product Sciences, 2015, 21, 240.	0.9	16
39	Marine-Derived Secondary Metabolite, Griseusrazin A, Suppresses Inflammation through Heme Oxygenase-1 Induction in Activated RAW264.7 Macrophages. Journal of Natural Products, 2016, 79, 1105-1111.	3.0	16
40	Desoxo-narchinol A and Narchinol B Isolated from Nardostachys jatamansi Exert Anti-neuroinflammatory Effects by Up-regulating of Nuclear Transcription Factor Erythroid-2-Related Factor 2/Heme Oxygenase-1 Signaling. Neurotoxicity Research, 2019, 35, 230-243.	2.7	16
41	Ethanol Extract of <i>Alismatis rhizome</i> Inhibits Adipocyte Differentiation of OP9 Cells. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-9.	1.2	15
42	Beneficial Effects of Fractions of <i>Nardostachys jatamansi</i> on Lipopolysaccharide-Induced Inflammatory Response. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-11.	1.2	15
43	Boseongazepines A–C, pyrrolobenzodiazepine derivatives from a Streptomyces sp. 11A057. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1802-1804.	2.2	15
44	Steroidal saponins from Datura metel. Steroids, 2017, 121, 1-9.	1.8	15
45	Vitis labruscana leaf extract ameliorates scopolamine-induced impairments with activation of Akt, ERK and CREB in mice. Phytomedicine, 2017, 36, 8-17.	5.3	15
46	Taraxacum coreanum protects against glutamate-induced neurotoxicity through heme oxygenase-1 expression in mouse hippocampal HT22 cells. Molecular Medicine Reports, 2017, 15, 2347-2352.	2.4	15
47	Nardosinone-Type Sesquiterpenes from the Hexane Fraction of Nardostachys jatamansi Attenuate NF-κB and MAPK Signaling Pathways in Lipopolysaccharide-Stimulated BV2 Microglial Cells. Inflammation, 2018, 41, 1215-1228.	3.8	15
48	Neuroprotective and Anti-Inflammatory Effects of Kuwanon C from Cudrania tricuspidata Are Mediated by Heme Oxygenase-1 in HT22 Hippocampal Cells, RAW264.7 Macrophage, and BV2 Microglia. International Journal of Molecular Sciences, 2020, 21, 4839.	4.1	15
49	Inhibition of indoleamine 2,3-dioxygenase by thielavin derivatives from a soil fungus, Coniochaeta sp. 10F058. Journal of Antibiotics, 2014, 67, 331-333.	2.0	14
50	KCHO-1, a Novel Antineuroinflammatory Agent, Inhibits Lipopolysaccharide-Induced Neuroinflammatory Responses through Nrf2-Mediated Heme Oxygenase-1 Expression in Mouse BV2 Microglia Cells. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-11.	1.2	14
51	4-parvifuran inhibits metastatic and invasive actions through the JAK2/STAT3 pathway in osteosarcoma cells. Archives of Pharmacal Research, 2017, 40, 601-609.	6.3	14
52	Anti-neuroinflammatory effects of cudraflavanone A isolated from the chloroform fraction of <i>Cudrania tricuspidata</i> root bark. Pharmaceutical Biology, 2018, 56, 192-200.	2.9	14
53	New preaustinoids from a marine-derived fungal strain Penicillium sp. SF-5497 and their inhibitory effects against PTP1B activity. Journal of Antibiotics, 2019, 72, 629-633.	2.0	14
54	Macrocyclic <i>bis</i> -quinolizidine alkaloids from <i>Xestospongia muta</i> . Natural Product Research, 2019, 33, 400-406.	1.8	14

#	Article	IF	CITATIONS
55	Cytotoxic and immunomodulatory phenol derivatives from a marine sponge-derived fungus <i>Ascomycota</i> sp. VK12. Natural Product Research, 2021, 35, 5153-5159.	1.8	14
56	Anti-Inflammatory and Cytoprotective Effects of TMC-256C1 from Marine-Derived Fungus Aspergillus sp. SF-6354 via up-Regulation of Heme Oxygenase-1 in Murine Hippocampal and Microglial Cell Lines. International Journal of Molecular Sciences, 2016, 17, 529.	4.1	13
57	Heme Oxygenase-1-Inducing Activity of 4-Methoxydalbergione and 4'-Hydroxy-4-methoxydalbergione from Dalbergia odorifera and Their Anti-inflammatory and Cytoprotective Effects in Murine Hippocampal and BV2 Microglial Cell Line and Primary Rat Microglial Cells. Neurotoxicity Research, 2018. 33. 337-352.	2.7	13
58	Anti-inflammatory Metabolites from <i>Chaetomium nigricolor</i> . Journal of Natural Products, 2020, 83, 881-887.	3.0	13
59	The herbal extract KCHO-1 exerts a neuroprotective effect by ameliorating oxidative stress via heme oxygenase-1 upregulation. Molecular Medicine Reports, 2016, 13, 4911-4919.	2.4	12
60	Protein tyrosine phosphatase 1B inhibitors from a marine-derived fungal strain <i>aspergillus</i> sp. SF-5929. Natural Product Research, 2020, 34, 675-682.	1.8	11
61	Terrein suppressed lipopolysaccharide-induced neuroinflammation through inhibition of NF-κB pathway by activating Nrf2/HO-1 signaling in BV2 and primary microglial cells. Journal of Pharmacological Sciences, 2020, 143, 209-218.	2.5	11
62	Cudraflavanone B Isolated from the Root Bark of Cudrania tricuspidata Alleviates Lipopolysaccharide-Induced Inflammatory Responses by Downregulating NF-κB and ERK MAPK Signaling Pathways in RAW264.7 Macrophages and BV2 Microglia. Inflammation, 2021, 44, 104-115.	3.8	11
63	The Ameliorating Effect of Myrrh on Scopolamine-Induced Memory Impairments in Mice. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-9.	1.2	10
64	Betulinic Acid Ameliorates the Severity of Acute Pancreatitis via Inhibition of the NF-κB Signaling Pathway in Mice. International Journal of Molecular Sciences, 2021, 22, 6871.	4.1	10
65	Penicillospirone from a marine isolate of Penicillium sp. (SF-5292) with anti-inflammatory activity. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3516-3520.	2.2	9
66	8α-Hydroxypinoresinol isolated from Nardostachys jatamansi ameliorates cerulein-induced acute pancreatitis through inhibition of NF-κB activation. Molecular Immunology, 2019, 114, 620-628.	2.2	9
67	Anti-Inflammatory Effects of Compounds from Cudrania tricuspidata in HaCaT Human Keratinocytes. International Journal of Molecular Sciences, 2021, 22, 7472.	4.1	9
68	Anti-Inflammatory Effects of Metabolites from Antarctic Fungal Strain Pleosporales sp. SF-7343 in HaCaT Human Keratinocytes. International Journal of Molecular Sciences, 2021, 22, 9674.	4.1	9
69	Anti-inflammatory norclerodane diterpenoids and tetrahydrophenanthrene from the leaves and stems of Dioscorea bulbifera. Fìtoterapìâ, 2021, 153, 104965.	2.2	9
70	Brassicaphenanthrene A from Brassica�rapa protects HT22 neuronal cells through the regulation of Nrf2‑mediated heme oxygenase‑1 expression. Molecular Medicine Reports, 2020, 21, 493-500.	2.4	8
71	Protective effects of Cambodian medicinal plants on tert-butyl hydroperoxide-induced hepatotoxicity via Nrf2-mediated heme oxygenase-1. Molecular Medicine Reports, 2017, 15, 451-459.	2.4	7
72	Chemical Constituents and an Antineuroinflammatory Lignan, Savinin from the Roots of <i> Acanthopanax henryi</i> . Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-10.	1.2	7

#	Article	IF	CITATIONS
73	Standardized microwave extract of Sappan Lignum exerts anti‑inflammatory effects through inhibition of NFâ€ÎºB activation via regulation of heme oxygenase‑1 expression. Molecular Medicine Reports, 2019, 19, 1809-1816.	2.4	7
74	Three Novel Monoterpenoid Glycosides From Fruits Of Eleutherococcus Henryi. Natural Product Research, 2021, 35, 1299-1306.	1.8	7
75	Anti-inflammatory spiroditerpenoids from Penicillium bialowiezense. Bioorganic Chemistry, 2021, 113, 105012.	4.1	7
76	Effects of Gastrodiae rhizoma on proliferation and differentiation of human embryonic neural stem cells. Asian Pacific Journal of Tropical Medicine, 2015, 8, 792-797.	0.8	6
77	Anti-neuroinflammatory effect of oxaline, isorhodoptilometrin, and 5-hydroxy-7-(2â€2-hydroxypropyl)-2-methyl-chromone obtained from the marine fungal strain Penicillium oxalicum CLC-MF05. Archives of Pharmacal Research, 2022, 45, 90-104.	6.3	6
78	New Acetylated Terpenoids from Sponge <i>Rhabdastrella providentiae</i> Inhibit NO Production in LPS Stimulated BV2 Cells. Natural Product Communications, 2018, 13, 1934578X1801300.	0.5	5
79	PTP1B Inhibitory Secondary Metabolites from an Antarctic Fungal Strain Acremonium sp. SF-7394. Molecules, 2021, 26, 5505.	3.8	5
80	Constituents from Ircinia echinata and their Antiproliferative Effect on Six Human Cancer Cell Strains. Letters in Organic Chemistry, 2017, 14, .	0.5	5
81	Anti-inflammatory effect of 3,7-dimethyl-1,8-hydroxy-6-methoxyisochroman via nuclear factor erythroid 2-like 2-mediated heme oxygenase-1 expression in lipopolysaccharide-stimulated RAW264.7 and BV2 cells. Immunopharmacology and Immunotoxicology, 2019, 41, 337-348.	2.4	4
82	Anti-inflammatory Effects of Sanhuang-Siwu-Tang in Lipopolysaccharide-Stimulated RAW264.7 Macrophages and BV2 Microglial Cells. Biological and Pharmaceutical Bulletin, 2021, 44, 535-543.	1.4	4
83	Chemical Analysis of the Ingredients of 20% Aqueous Ethanol Extract of Nardostachys jatamansi through Phytochemical Study and Evaluation of Anti-Neuroinflammatory Component. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-14.	1.2	4
84	Iridoid Glycosides and Phenolic Glycosides from Buddleja asiatica with Anti-inflammatory and Cytoprotective Activities. Natural Product Communications, 2018, 13, 1934578X1801300.	0.5	3
85	Phenolic glycosides from Oroxylum indicum. Natural Product Research, 2020, , 1-5.	1.8	3
86	Iridoids and cycloartane saponins from <i>mussaenda pilosissima</i> valeton and their inhibitory NO production in BV2 cells. Natural Product Research, 2021, 35, 4126-4132.	1.8	3
87	Chemical constituents from <i>Lycopodiella cernua</i> and their anti-inflammatory and cytotoxic activities. Natural Product Research, 2022, 36, 4045-4051.	1.8	3
88	Nardostachin from <i>Nardostachys jatamansi</i> exerts anti‑neuroinflammatory effects through TLR4/MyD88‑related suppression of the NF‴κB and JNK MAPK signaling pathways in lipopolysaccharide‑induced BV2 and primary microglial cells. Molecular Medicine Reports, 2020, 23, .	2.4	3
89	Cytotoxic and nitric oxide inhibitory activities of triterpenoids from <i>Lycopodium clavatum</i> L Natural Product Research, 2022, 36, 6232-6239.	1.8	3
90	A fraction from Dojuksan 30% ethanol extract exerts its anti-inflammatory effects through Nrf2-dependent heme oxygenase-1 expression. International Journal of Molecular Medicine, 2016, 37, 475-484.	4.0	2

#	Article	IF	CITATIONS
91	Potential of Ramalin and Its Derivatives for the Treatment of Alzheimer's Disease. Molecules, 2021, 26, 6445.	3.8	2
92	Identification of Potential Anti-Neuroinflammatory Inhibitors from Antarctic Fungal Strain Aspergillus sp. SF-7402 via Regulating the NF-ήB Signaling Pathway in Microglia. Molecules, 2022, 27, 2851.	3.8	2
93	Steroidal Glucosides from the Rhizomes of Tacca Chantrieri and Their Inhibitory Activities of NO Production in BV2 Cells. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	1
94	Isolation and structure determination of a new diketopiperazine dimer from marine-derived fungus Aspergillus sp. SF-5280. , 0, .		1
95	Stem bark of <i>Fraxinus rhynchophylla</i> ameliorates the severity of pancreatic fibrosis by regulating the TGF-β/Smad signaling pathway. Journal of Investigative Medicine, 2022, 70, 1285-1292.	1.6	1
96	Bioactive Secondary Metabolites from the Aerial Parts of <i>Buddleja macrostachya</i> . Natural Product Communications, 2017, 12, 1934578X1701201.	0.5	0
97	Macluraxanthone B inhibits LPS-induced inflammatory responses in RAW264.7 and BV2 cells by regulating the NF-κB and MAPK signaling pathways. Immunopharmacology and Immunotoxicology, 2021, , 1-9	2.4	0