Maxime Fournier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2104886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Origin and consequences of silicate glass passivation by surface layers. Nature Communications, 2015, 6, 6360.	5.8	219
2	The fate of silicon during glass corrosion under alkaline conditions: A mechanistic and kinetic study with the International Simple Glass. Geochimica Et Cosmochimica Acta, 2015, 151, 68-85.	1.6	165
3	Resumption of nuclear glass alteration: State of the art. Journal of Nuclear Materials, 2014, 448, 348-363.	1.3	124
4	Dynamics of self-reorganization explains passivation of silicate glasses. Nature Communications, 2018, 9, 2169.	5.8	94
5	Structure of International Simple Glass and properties of passivating layer formed in circumneutral pH conditions. Npj Materials Degradation, 2018, 2, .	2.6	91
6	Atom-Probe Tomography, TEM and ToF-SIMS study of borosilicate glass alteration rim: A multiscale approach to investigating rate-limiting mechanisms. Geochimica Et Cosmochimica Acta, 2017, 202, 57-76.	1.6	88
7	The controversial role of inter-diffusion in glass alteration. Chemical Geology, 2016, 440, 115-123.	1.4	80
8	Glass dissolution rate measurement and calculation revisited. Journal of Nuclear Materials, 2016, 476, 140-154.	1.3	69
9	Various effects of magnetite on international simple glass (ISC) dissolution: implications for the long-term durability of nuclear glasses. Npj Materials Degradation, 2017, 1, .	2.6	57
10	Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass. Journal of Non-Crystalline Solids, 2015, 427, 120-133.	1.5	47
11	Contribution of zeolite-seeded experiments to the understanding of resumption of glass alteration. Npj Materials Degradation, 2017, 1, .	2.6	47
12	Impact of alkali on the passivation of silicate glass. Npj Materials Degradation, 2018, 2, .	2.6	42
13	Resumption of Alteration at High Temperature and pH: Rates Measurements and Comparison with Initial Rates. , 2014, 7, 202-208.		34
14	Comparing the reactivity of glasses with their crystalline equivalents: The case study of plagioclase feldspar. Geochimica Et Cosmochimica Acta, 2019, 254, 122-141.	1.6	27
15	Chemical durability of peraluminous glasses for nuclear waste conditioning. Npj Materials Degradation, 2018, 2, .	2.6	25
16	Effect of pH on the stability of passivating gel layers formed on International Simple Glass. Journal of Nuclear Materials, 2019, 524, 21-38.	1.3	25
17	Structure and Chemical Durability of Lead Crystal Glass. Environmental Science & Technology, 2016, 50, 11549-11558.	4.6	24
18	Effect of Zeolite Formation on Borosilicate Glass Dissolution Kinetics. Procedia Earth and Planetary Science, 2013, 7, 264-267.	0.6	23

MAXIME FOURNIER

#	Article	IF	CITATIONS
19	Influence of zeolite precipitation on borosilicate glass alteration under hyperalkaline conditions. Journal of Nuclear Materials, 2017, 491, 67-82.	1.3	20
20	Solid sorbents for gaseous iodine capture and their conversion into stable waste forms. Journal of Nuclear Materials, 2022, 563, 153635.	1.3	14
21	Application of GRAAL model to the resumption of International Simple Glass alteration. Npj Materials Degradation, 2018, 2, .	2.6	13
22	Modeling Resumption of Glass Alteration Due to Zeolites Precipitation. Procedia Earth and Planetary Science, 2017, 17, 340-343.	0.6	10
23	Reactive Surface of Glass Particles Under Aqueous Corrosion. Procedia Earth and Planetary Science, 2017, 17, 257-260.	0.6	3
24	Development of Generic Criteria for Evaluating the Disposability of Thermally Treated Wastes. IOP Conference Series: Materials Science and Engineering, 0, 818, 012013.	0.3	2
25	Strategic Study of Thermal Treatment of European Radioactive Wastes. IOP Conference Series: Materials Science and Engineering, 2020, 818, 012002.	0.3	1
26	In-Can vitrification of ash. IOP Conference Series: Materials Science and Engineering, 2020, 818, 012005.	0.3	1
27	Incineration-vitrifÃcation of a mixture of zeolites, diatoms and ion exchange resins using the SHIVA process. IOP Conference Series: Materials Science and Engineering, 2020, 818, 012015.	0.3	1