
Carlos Olano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/210485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Colibrimycins, Novel Halogenated Hybrid Polyketide Synthase-Nonribosomal Peptide Synthetase (PKS-NRPS) Compounds Produced by <i>Streptomyces</i> sp. Strain CS147. Applied and Environmental Microbiology, 2022, 88, AEM0183921.	1.4	13
2	A Multidisciplinary Approach to Unraveling the Natural Product Biosynthetic Potential of a Streptomyces Strain Collection Isolated from Leaf-Cutting Ants. Microorganisms, 2021, 9, 2225.	1.6	7
3	New Sipanmycin Analogues Generated by Combinatorial Biosynthesis and Mutasynthesis Approaches Relying on the Substrate Flexibility of Key Enzymes in the Biosynthetic Pathway. Applied and Environmental Microbiology, 2020, 86, .	1.4	10
4	Searching for Glycosylated Natural Products in Actinomycetes and Identification of Novel Macrolactams and Angucyclines. Frontiers in Microbiology, 2018, 9, 39.	1.5	25
5	New Insights into the Biosynthesis Pathway of Polyketide Alkaloid Argimycins P in Streptomyces argillaceus. Frontiers in Microbiology, 2018, 9, 252.	1.5	23
6	Cooperative Involvement of Glycosyltransferases in the Transfer of Amino Sugars during the Biosynthesis of the Macrolactam Sipanmycin by Streptomyces sp. Strain CS149. Applied and Environmental Microbiology, 2018, 84, .	1.4	14
7	Characterization of the Jomthonic Acids Biosynthesis Pathway and Isolation of Novel Analogues in Streptomyces caniferus GUA-06-05-006A. Marine Drugs, 2018, 16, 259.	2.2	10
8	Caboxamycin biosynthesis pathway and identification of novel benzoxazoles produced by crossâ€ŧalk in <i>Streptomyces</i> sp. <scp>NTK</scp> 937. Microbial Biotechnology, 2017, 10, 873-885.	2.0	49
9	Engineered jadomycin analogues with altered sugar moieties revealing JadS as a substrate flexible O-glycosyltransferase. Applied Microbiology and Biotechnology, 2017, 101, 5291-5300.	1.7	5
10	Exploring the biocombinatorial potential of benzoxazoles: generation of novel caboxamycin derivatives. Microbial Cell Factories, 2017, 16, 93.	1.9	7
11	Novel Bioactive Paulomycin Derivatives Produced by Streptomyces albus J1074. Molecules, 2017, 22, 1758.	1.7	14
12	Identification by Genome Mining of a Type I Polyketide Gene Cluster from Streptomyces argillaceus Involved in the Biosynthesis of Pyridine and Piperidine Alkaloids Argimycins P. Frontiers in Microbiology, 2017, 8, 194.	1.5	34
13	New insights into paulomycin biosynthesis pathway in Streptomyces albus J1074 and generation of novel derivatives by combinatorial biosynthesis. Microbial Cell Factories, 2016, 15, 56.	1.9	27
14	Elucidation of the glycosylation steps during biosynthesis of antitumor macrolides PM100117 and PM100118 and engineering for novel derivatives. Microbial Cell Factories, 2016, 15, 187.	1.9	15
15	Characterization and engineering of the biosynthesis gene cluster for antitumor macrolides PM100117 and PM100118 from a marine actinobacteria: generation of a novel improved derivative. Microbial Cell Factories, 2016, 15, 44.	1.9	30
16	Crosstalk of Nataxazole Pathway with Chorismateâ€Derived Ionophore Biosynthesis Pathways in <i>Streptomyces</i> sp. Tü 6176. ChemBioChem, 2015, 16, 1925-1932.	1.3	17
17	Genome Mining of <i>Streptomyces</i> sp. Tü 6176: Characterization of the Nataxazole Biosynthesis Pathway. ChemBioChem, 2015, 16, 1461-1473.	1.3	53
18	Draft Genome Sequence of Marine Actinomycete Streptomyces sp. Strain NTK 937, Producer of the Benzoxazole Antibiotic Caboxamycin. Genome Announcements, 2014, 2, .	0.8	4

CARLOS OLANO

#	Article	IF	CITATIONS
19	Strategies for the Design and Discovery of Novel Antibiotics using Genetic Engineering and Genome Mining. , 2014, , 1-25.		4
20	Collismycin A biosynthesis in Streptomyces sp. CS40 is regulated by iron levels through two pathway-specific regulators. Microbiology (United Kingdom), 2014, 160, 467-478.	0.7	13
21	Activation and identification of five clusters for secondary metabolites in <scp><i>S</i></scp> <i>treptomyces albus</i> â€ <scp>J</scp> 1074. Microbial Biotechnology, 2014, 7, 242-256.	2.0	190
22	Three pathway-specific regulators control streptolydigin biosynthesis in Streptomyces lydicus. Microbiology (United Kingdom), 2012, 158, 2504-2514.	0.7	18
23	Participation of putative glycoside hydrolases <scp>SlgC</scp> 1 and <scp>SlgC</scp> 2 in the biosynthesis of streptolydigin in <i><scp>S</scp>treptomyces lydicus</i> . Microbial Biotechnology, 2012, 5, 663-667.	2.0	3
24	Novel compounds produced by Streptomyces lydicus NRRL 2433 engineered mutants altered in the biosynthesis of streptolydigin. Journal of Antibiotics, 2012, 65, 341-348.	1.0	17
25	Hutchinson's legacy: keeping on polyketide biosynthesis. Journal of Antibiotics, 2011, 64, 51-57.	1.0	11
26	Molecular insights on the biosynthesis of antitumour compounds by actinomycetes. Microbial Biotechnology, 2011, 4, 144-164.	2.0	28
27	Biosynthesis of the RNA Polymerase Inhibitor Streptolydigin in Streptomyces lydicus: Tailoring Modification of 3-Methyl-Aspartate. Journal of Bacteriology, 2011, 193, 2647-2651.	1.0	24
28	Amino Acid Precursor Supply in the Biosynthesis of the RNA Polymerase Inhibitor Streptolydigin by Streptomyces lydicus. Journal of Bacteriology, 2011, 193, 4214-4223.	1.0	23
29	Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Natural Product Reports, 2010, 27, 571.	5.2	144
30	Modulation of Deoxysugar Transfer by the Elloramycin Glycosyltransferase ElmGT through Site-Directed Mutagenesis. Journal of Bacteriology, 2009, 191, 2871-2875.	1.0	14
31	Deciphering Biosynthesis of the RNA Polymerase Inhibitor Streptolydigin and Generation of Glycosylated Derivatives. Chemistry and Biology, 2009, 16, 1031-1044.	6.2	65
32	Chapter 11 Sugar Biosynthesis and Modification. Methods in Enzymology, 2009, 458, 277-308.	0.4	12
33	Antitumor Compounds from Marine Actinomycetes. Marine Drugs, 2009, 7, 210-248.	2.2	256
34	Antitumor compounds from actinomycetes: from gene clusters to new derivatives by combinatorial biosynthesis. Natural Product Reports, 2009, 26, 628.	5.2	122
35	Glycosylated Derivatives of Steffimycin: Insights into the Role of the Sugar Moieties for the Biological Activity. ChemBioChem, 2008, 9, 624-633.	1.3	39
36	Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metabolic Engineering, 2008, 10, 281-292.	3.6	254

CARLOS OLANO

#	Article	IF	CITATIONS
37	Biosynthesis of the angiogenesis inhibitor borrelidin: directed biosynthesis of novel analogues. Chemical Communications, 2006, , 2341-2343.	2.2	38
38	Separation of anti-angiogenic and cytotoxic activities of borrelidin by modification at the C17 side chain. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5814-5817.	1.0	38
39	Isolation, Characterization, and Heterologous Expression of the Biosynthesis Gene Cluster for the Antitumor Anthracycline Steffimycin. Applied and Environmental Microbiology, 2006, 72, 4172-4183.	1.4	99
40	Biosynthesis of the angiogenesis inhibitor borrelidin by Streptomyces parvulus Tü4055: insights into nitrile formationâ€. Molecular Microbiology, 2004, 52, 1745-1756.	1.2	67
41	Biosynthesis of the Angiogenesis Inhibitor Borrelidin by Streptomyces parvulus Tü4055. Chemistry and Biology, 2004, 11, 87-97.	6.2	82
42	Biosynthesis of the Angiogenesis Inhibitor Borrelidin by Streptomyces parvulus Tü4055Cluster Analysis and Assignment of Functions. Chemistry and Biology, 2004, 11, 87-97.	6.2	44
43	Evidence from engineered gene fusions for the repeated use of a module in a modular polyketide synthase. Chemical Communications, 2003, , 2780-2782.	2.2	61
44	Functional Analysis of OleY l -Oleandrosyl 3- O -Methyltransferase of the Oleandomycin Biosynthetic Pathway in Streptomyces antibioticus. Journal of Bacteriology, 2001, 183, 5358-5363.	1.0	47
45	The dnrO gene encodes a DNA-binding protein that regulates daunorubicin production in Streptomyces peucetius by controlling expression of the dnrN pseudo response regulator gene. Microbiology (United Kingdom), 2000, 146, 1457-1468.	0.7	37
46	Identification and Expression of Genes Involved in Biosynthesis of I -Oleandrose and Its Intermediate I -Olivose in the Oleandomycin Producer Streptomyces antibioticus. Antimicrobial Agents and Chemotherapy, 2000, 44, 1266-1275.	1.4	103
47	A two-plasmid system for the glycosylation of polyketide antibiotics: bioconversion of ε-rhodomycinone to rhodomycin D. Chemistry and Biology, 1999, 6, 845-855.	6.2	60
48	Analysis of a Streptomyces antibioticus chromosomal region involved in oleandomycin biosynthesis, which encodes two glycosyltransferases responsible for glycosylation of the macrolactone ring. Molecular Genetics and Genomics, 1998, 259, 299-308.	2.4	62
49	Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus. Molecular Microbiology, 1998, 28, 1177-1185.	1.2	179
50	Topological studies of the membrane component of the OleC ABC transporter involved in oleandomycin resistance in Streptomyces antibioticus. FEMS Microbiology Letters, 1996, 143, 133-139.	0.7	9
51	A second ABC transporter is involved in oleandomycin resistance and its secretion by Streptomyces antibioticus. Molecular Microbiology, 1995, 16, 333-343.	1.2	69
52	A cytochrome P450-like gene possibly involved in oleandomycin biosynthesis byStreptomyces antibioticus. FEMS Microbiology Letters, 1995, 127, 117-120.	0.7	58
53	Streptomyces antibioticus contains at least three oleandomycin-resistance determinants, one of which shows similarity with proteins of the ABC-transporter superfamily. Molecular Microbiology, 1993, 8, 571-582.	1.2	77
54	Characterization of a Streptomyces antibioticus gene cluster encoding a glycosyltransferase involved in oleandomycin inactivation. Gene, 1993, 134, 139-140.	1.0	50