
rer nat Kunal Bhattacharya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2104677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anti-obesity activity of polyherbal formulation Divya-Medohar-Vati by inhibition of pancreatic lipase activity and triglyceride translocation through enterocytes. Phytomedicine Plus, 2022, 2, 100194.	2.0	1
2	Comprehensive Phytochemical Profiling of Polyherbal Divya-Kayakalp-Vati and Divya-Kayakalp-Oil and Their Combined Efficacy in Mouse Model of Atopic Dermatitis-Like Inflammation Through Regulation of Cytokines. Clinical, Cosmetic and Investigational Dermatology, 2022, Volume 15, 293-312.	1.8	0
3	Herbo-metallic ethnomedicine â€~Malla Sindoor' ameliorates lung inflammation in murine model of allergic asthma by modulating cytokines status and oxidative stress. Journal of Ethnopharmacology, 2022, 292, 115120.	4.1	2
4	Livogrit Prevents Methionine-Cystine Deficiency Induced Nonalcoholic Steatohepatitis by Modulation of Steatosis and Oxidative Stress in Human Hepatocyte-Derived Spheroid and in Primary Rat Hepatocytes. Bioengineered, 2022, 13, 10811-10826.	3.2	7
5	Livogrit ameliorates acetaldehyde-induced steatosis in HepG2 cells through modulation of lipogenesis and I2-oxidation pathways. Phytomedicine Plus, 2021, 1, 100067.	2.0	7
6	Modulation of psoriatic-like skin inflammation by traditional Indian medicine Divya-Kayakalp-Vati and Oil through attenuation of pro-inflammatory cytokines. Journal of Traditional and Complementary Medicine, 2021, , .	2.7	2
7	Divya-Arjuna-Kwath (Terminalia arjuna) and Divya-HridyAmrit-Vati ameliorate isoproterenol-induced hypertrophy in murine cardiomyocytes through modulation of oxidative stress. Phytomedicine Plus, 2021, 1, 100074.	2.0	2
8	Development of Microfluidic, Serum-Free Bronchial Epithelial Cells-on-a-Chip to Facilitate a More Realistic In vitro Testing of Nanoplastics. Frontiers in Toxicology, 2021, 3, 735331.	3.1	7
9	Tri-Herbal Medicine Divya Sarva-Kalp-Kwath (Livogrit) Regulates Fatty Acid-Induced Steatosis in Human HepG2 Cells through Inhibition of Intracellular Triglycerides and Extracellular Glycerol Levels. Molecules, 2020, 25, 4849.	3.8	10
10	Polyherbal Medicine Divya Sarva-Kalp-Kwath Ameliorates Persistent Carbon Tetrachloride Induced Biochemical and Pathological Liver Impairments in Wistar Rats and in HepG2 Cells. Frontiers in Pharmacology, 2020, 11, 288.	3.5	9
11	Application of Zebrafish Model in the Suppression of Drug-Induced Cardiac Hypertrophy by Traditional Indian Medicine Yogendra Ras. Biomolecules, 2020, 10, 600.	4.0	9
12	A 21-day sub-acute, whole-body inhalation exposure to printer-emitted engineered nanoparticles in rats: Exploring pulmonary and systemic effects. NanoImpact, 2019, 15, 100176.	4.5	16
13	Anti-Inflammatory and Anti-Arthritic Efficacies of an Indian Traditional Herbo-Mineral Medicine "Divya Amvatari Ras―in Collagen Antibody-Induced Arthritis (CAIA) Mouse Model Through Modulation of IL-6/IL-1β/TNF-α/NFκB Signaling. Frontiers in Pharmacology, 2019, 10, 659.	3.5	21
14	Cytokines Driven Anti-Inflammatory and Anti-Psoriasis Like Efficacies of Nutraceutical Sea Buckthorn (Hippophae rhamnoides) Oil. Frontiers in Pharmacology, 2019, 10, 1186.	3.5	19
15	Toxicological effects of ingested nanocellulose in <i>in vitro</i> intestinal epithelium and <i>in vivo</i> rat models. Environmental Science: Nano, 2019, 6, 2105-2115.	4.3	93
16	Herbo-mineral formulation â€~Ashwashila' attenuates rheumatoid arthritis symptoms in collagen-antibody-induced arthritis (CAIA) mice model. Scientific Reports, 2019, 9, 8025.	3.3	25
17	Development & characterization of fluorescently tagged nanocellulose for nanotoxicological studies. Environmental Science: Nano, 2019, 6, 1516-1526.	4.3	21
18	Development of a standardized food model for studying the impact of food matrix effects on the gastrointestinal fate and toxicity of ingested nanomaterials. NanoImpact. 2019, 13, 13-25.	4.5	77

#	Article	IF	CITATIONS
19	Nitric Oxide Dependent Degradation of Polyethylene Glycolâ€Modified Singleâ€Walled Carbon Nanotubes: Implications for Intraâ€Articular Delivery. Advanced Healthcare Materials, 2018, 7, e1700916.	7.6	14
20	Graphene oxide is degraded by neutrophils and the degradation products are non-genotoxic. Nanoscale, 2018, 10, 1180-1188.	5.6	148
21	Cytotoxicity screening and cytokine profiling of nineteen nanomaterials enables hazard ranking and grouping based on inflammogenic potential. Nanotoxicology, 2017, 11, 809-826.	3.0	62
22	Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4. Scientific Reports, 2016, 6, 21316.	3.3	43
23	Skeletal Mineralization Deficits and Impaired Biogenesis and Function of Chondrocyte-Derived Matrix Vesicles in <i>Phospho1</i> –/– and <i>Phospho1/Pit1</i> Double-Knockout Mice. Journal of Bone and Mineral Research, 2016, 31, 1275-1286.	2.8	53
24	Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 333-351.	3.3	322
25	Nanodrugs to target articular cartilage: An emerging platform for osteoarthritis therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 255-268.	3.3	50
26	Lactoperoxidase-mediated degradation of single-walled carbon nanotubes in the presence of pulmonary surfactant. Carbon, 2015, 91, 506-517.	10.3	49
27	Dual effects of β-cyclodextrin-stabilised silver nanoparticles: enhanced biofilm inhibition and reduced cytotoxicity. Journal of Materials Science: Materials in Medicine, 2015, 26, 5367.	3.6	43
28	Keeping it real: The importance of material characterization in nanotoxicology. Biochemical and Biophysical Research Communications, 2015, 468, 498-503.	2.1	65
29	Shifting identities of metal oxide nanoparticles: Focus on inflammation. MRS Bulletin, 2014, 39, 970-975.	3.5	8
30	Enzymatic â€~stripping' and degradation of PEGylated carbon nanotubes. Nanoscale, 2014, 6, 14686-14690.	5.6	54
31	Extracellular entrapment and degradation of single-walled carbon nanotubes. Nanoscale, 2014, 6, 6974.	5.6	60
32	Mechanisms of carbon nanotube-induced toxicity: Focus on pulmonary inflammation. Advanced Drug Delivery Reviews, 2013, 65, 2087-2097.	13.7	126
33	Non-cytotoxic antibacterial silver–coumarin complex doped sol–gel coatings. Colloids and Surfaces B: Biointerfaces, 2013, 102, 412-419.	5.0	23
34	Geoengineering: Perilous Particles. Science, 2013, 340, 548-549.	12.6	16
35	Comparison of Micro- and Nanoscale Fe+3–Containing (Hematite) Particles for Their Toxicological Properties in Human Lung Cells In Vitro. Toxicological Sciences, 2012, 126, 173-182.	3.1	47
36	Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles. Toxicology Letters, 2012, 215, 151-160.	0.8	41

#	Article	IF	CITATIONS
37	Collagen matrices as an improved model for in vitro study of live cells using Raman microspectroscopy. Proceedings of SPIE, 2011, , .	0.8	2
38	Nanoparticles Induce Changes of the Electrical Activity of Neuronal Networks on Microelectrode Array Neurochips. Environmental Health Perspectives, 2010, 118, 1363-1369.	6.0	77
39	Study of Live Cells Grown on Three Dimensional Collagen Gels Using Raman Microspectroscopy. , 2010, , .		Ο
40	Intracellular localisation, geno- and cytotoxic response of polyN-isopropylacrylamide (PNIPAM) nanoparticles to human keratinocyte (HaCaT) and colon cells (SW 480). Toxicology Letters, 2010, 198, 134-143.	0.8	80
41	Imaging live cells grown on a three dimensional collagen matrix using Raman microspectroscopy. Analyst, The, 2010, 135, 3169.	3.5	58
42	Three dimensional collagen gels as a cell culture matrix for the study of live cells by Raman spectroscopy. Analyst, The, 2010, 135, 1697.	3.5	26
43	Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Particle and Fibre Toxicology, 2009, 6, 17.	6.2	274
44	Vanadium Pentoxide-Coated Ultrafine Titanium Dioxide Particles Induce Cellular Damage and Micronucleus Formation in V79 Cells. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 976-980.	2.3	26
45	Oxidative Stress and Changed Gene Expression Profiles in Fiber-/Particle-Induced Carcinogenesis. International Journal of Human Genetics, 2007, 7, 1-21.	0.1	9
46	Biomarkers in risk assessment of asbestos exposure. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 579, 6-21.	1.0	29
47	ROS-mediated genotoxicity of asbestos-cement in mammalian lung cells in vitro. Particle and Fibre Toxicology, 2005, 2, 9.	6.2	30
48	Reduction of chrysotile asbestos-induced genotoxicity in human peripheral blood lymphocytes by garlic extract. Toxicology Letters, 2004, 153, 327-332.	0.8	13
49	Role of PHOSPHO1 in chondrocyte matrix vesicle mineralization: an AFM study. Bone Abstracts, 0, , .	0.0	0