rer nat Kunal Bhattacharya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2104677/publications.pdf

Version: 2024-02-01

49 papers

2,176 citations

236925 25 h-index 233421 45 g-index

50 all docs 50 docs citations

50 times ranked

4013 citing authors

#	Article	IF	CITATIONS
1	Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 333-351.	3.3	322
2	Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Particle and Fibre Toxicology, 2009, 6, 17.	6.2	274
3	Graphene oxide is degraded by neutrophils and the degradation products are non-genotoxic. Nanoscale, $2018,10,1180$ - $1188.$	5 . 6	148
4	Mechanisms of carbon nanotube-induced toxicity: Focus on pulmonary inflammation. Advanced Drug Delivery Reviews, 2013, 65, 2087-2097.	13.7	126
5	Toxicological effects of ingested nanocellulose in <i>in vitro</i> intestinal epithelium and <i>in vivo</i> rat models. Environmental Science: Nano, 2019, 6, 2105-2115.	4.3	93
6	Intracellular localisation, geno- and cytotoxic response of polyN-isopropylacrylamide (PNIPAM) nanoparticles to human keratinocyte (HaCaT) and colon cells (SW 480). Toxicology Letters, 2010, 198, 134-143.	0.8	80
7	Nanoparticles Induce Changes of the Electrical Activity of Neuronal Networks on Microelectrode Array Neurochips. Environmental Health Perspectives, 2010, 118, 1363-1369.	6.0	77
8	Development of a standardized food model for studying the impact of food matrix effects on the gastrointestinal fate and toxicity of ingested nanomaterials. NanoImpact, 2019, 13, 13-25.	4. 5	77
9	Keeping it real: The importance of material characterization in nanotoxicology. Biochemical and Biophysical Research Communications, 2015, 468, 498-503.	2.1	65
10	Cytotoxicity screening and cytokine profiling of nineteen nanomaterials enables hazard ranking and grouping based on inflammogenic potential. Nanotoxicology, 2017, 11, 809-826.	3.0	62
11	Extracellular entrapment and degradation of single-walled carbon nanotubes. Nanoscale, 2014, 6, 6974.	5 . 6	60
12	Imaging live cells grown on a three dimensional collagen matrix using Raman microspectroscopy. Analyst, The, 2010, 135, 3169.	3.5	58
13	Enzymatic â€~stripping' and degradation of PEGylated carbon nanotubes. Nanoscale, 2014, 6, 14686-14690.	5.6	54
14	Skeletal Mineralization Deficits and Impaired Biogenesis and Function of Chondrocyte-Derived Matrix Vesicles in <i>Phospho1</i> Phospho1 Pit1 Double-Knockout Mice. Journal of Bone and Mineral Research, 2016, 31, 1275-1286.	2.8	53
15	Nanodrugs to target articular cartilage: An emerging platform for osteoarthritis therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 255-268.	3.3	50
16	Lactoperoxidase-mediated degradation of single-walled carbon nanotubes in the presence of pulmonary surfactant. Carbon, 2015, 91, 506-517.	10.3	49
17	Comparison of Micro- and Nanoscale Fe+3–Containing (Hematite) Particles for Their Toxicological Properties in Human Lung Cells In Vitro. Toxicological Sciences, 2012, 126, 173-182.	3.1	47
18	Dual effects of \hat{l}^2 -cyclodextrin-stabilised silver nanoparticles: enhanced biofilm inhibition and reduced cytotoxicity. Journal of Materials Science: Materials in Medicine, 2015, 26, 5367.	3.6	43

#	Article	IF	CITATIONS
19	Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4. Scientific Reports, 2016, 6, 21316.	3.3	43
20	Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles. Toxicology Letters, 2012, 215, 151-160.	0.8	41
21	ROS-mediated genotoxicity of asbestos-cement in mammalian lung cells in vitro. Particle and Fibre Toxicology, 2005, 2, 9.	6.2	30
22	Biomarkers in risk assessment of asbestos exposure. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 579, 6-21.	1.0	29
23	Vanadium Pentoxide-Coated Ultrafine Titanium Dioxide Particles Induce Cellular Damage and Micronucleus Formation in V79 Cells. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 976-980.	2.3	26
24	Three dimensional collagen gels as a cell culture matrix for the study of live cells by Raman spectroscopy. Analyst, The, 2010, 135, 1697.	3.5	26
25	Herbo-mineral formulation â€~Ashwashila' attenuates rheumatoid arthritis symptoms in collagen-antibody-induced arthritis (CAIA) mice model. Scientific Reports, 2019, 9, 8025.	3.3	25
26	Non-cytotoxic antibacterial silver–coumarin complex doped sol–gel coatings. Colloids and Surfaces B: Biointerfaces, 2013, 102, 412-419.	5.0	23
27	Anti-Inflammatory and Anti-Arthritic Efficacies of an Indian Traditional Herbo-Mineral Medicine "Divya Amvatari Ras―in Collagen Antibody-Induced Arthritis (CAIA) Mouse Model Through Modulation of IL-6/IL-1β/TNF-α/NFκB Signaling. Frontiers in Pharmacology, 2019, 10, 659.	3.5	21
28	Development & De	4.3	21
29	Cytokines Driven Anti-Inflammatory and Anti-Psoriasis Like Efficacies of Nutraceutical Sea Buckthorn (Hippophae rhamnoides) Oil. Frontiers in Pharmacology, 2019, 10, 1186.	3.5	19
30	Geoengineering: Perilous Particles. Science, 2013, 340, 548-549.	12.6	16
31	A 21-day sub-acute, whole-body inhalation exposure to printer-emitted engineered nanoparticles in rats: Exploring pulmonary and systemic effects. NanoImpact, 2019, 15, 100176.	4.5	16
32	Nitric Oxide Dependent Degradation of Polyethylene Glycolâ€Modified Singleâ€Walled Carbon Nanotubes: Implications for Intraâ€Articular Delivery. Advanced Healthcare Materials, 2018, 7, e1700916.	7.6	14
33	Reduction of chrysotile asbestos-induced genotoxicity in human peripheral blood lymphocytes by garlic extract. Toxicology Letters, 2004, 153, 327-332.	0.8	13
34	Tri-Herbal Medicine Divya Sarva-Kalp-Kwath (Livogrit) Regulates Fatty Acid-Induced Steatosis in Human HepG2 Cells through Inhibition of Intracellular Triglycerides and Extracellular Glycerol Levels. Molecules, 2020, 25, 4849.	3.8	10
35	Oxidative Stress and Changed Gene Expression Profiles in Fiber-/Particle-Induced Carcinogenesis. International Journal of Human Genetics, 2007, 7, 1-21.	0.1	9
36	Polyherbal Medicine Divya Sarva-Kalp-Kwath Ameliorates Persistent Carbon Tetrachloride Induced Biochemical and Pathological Liver Impairments in Wistar Rats and in HepG2 Cells. Frontiers in Pharmacology, 2020, 11, 288.	3.5	9

#	Article	IF	CITATIONS
37	Application of Zebrafish Model in the Suppression of Drug-Induced Cardiac Hypertrophy by Traditional Indian Medicine Yogendra Ras. Biomolecules, 2020, 10, 600.	4.0	9
38	Shifting identities of metal oxide nanoparticles: Focus on inflammation. MRS Bulletin, 2014, 39, 970-975.	3.5	8
39	Livogrit ameliorates acetaldehyde-induced steatosis in HepG2 cells through modulation of lipogenesis and l^2 -oxidation pathways. Phytomedicine Plus, 2021, 1, 100067.	2.0	7
40	Development of Microfluidic, Serum-Free Bronchial Epithelial Cells-on-a-Chip to Facilitate a More Realistic In vitro Testing of Nanoplastics. Frontiers in Toxicology, 2021, 3, 735331.	3.1	7
41	Livogrit Prevents Methionine-Cystine Deficiency Induced Nonalcoholic Steatohepatitis by Modulation of Steatosis and Oxidative Stress in Human Hepatocyte-Derived Spheroid and in Primary Rat Hepatocytes. Bioengineered, 2022, 13, 10811-10826.	3.2	7
42	Collagen matrices as an improved model for in vitro study of live cells using Raman microspectroscopy. Proceedings of SPIE, 2011 , , .	0.8	2
43	Modulation of psoriatic-like skin inflammation by traditional Indian medicine Divya-Kayakalp-Vati and Oil through attenuation of pro-inflammatory cytokines. Journal of Traditional and Complementary Medicine, 2021, , .	2.7	2
44	Divya-Arjuna-Kwath (Terminalia arjuna) and Divya-HridyAmrit-Vati ameliorate isoproterenol-induced hypertrophy in murine cardiomyocytes through modulation of oxidative stress. Phytomedicine Plus, 2021, 1, 100074.	2.0	2
45	Herbo-metallic ethnomedicine †Malla Sindoor' ameliorates lung inflammation in murine model of allergic asthma by modulating cytokines status and oxidative stress. Journal of Ethnopharmacology, 2022, 292, 115120.	4.1	2
46	Anti-obesity activity of polyherbal formulation Divya-Medohar-Vati by inhibition of pancreatic lipase activity and triglyceride translocation through enterocytes. Phytomedicine Plus, 2022, 2, 100194.	2.0	1
47	Study of Live Cells Grown on Three Dimensional Collagen Gels Using Raman Microspectroscopy. , 2010, , .		0
48	Role of PHOSPHO1 in chondrocyte matrix vesicle mineralization: an AFM study. Bone Abstracts, 0, , .	0.0	0
49	Comprehensive Phytochemical Profiling of Polyherbal Divya-Kayakalp-Vati and Divya-Kayakalp-Oil and Their Combined Efficacy in Mouse Model of Atopic Dermatitis-Like Inflammation Through Regulation of Cytokines. Clinical, Cosmetic and Investigational Dermatology, 2022, Volume 15, 293-312.	1.8	0