List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2104659/publications.pdf Version: 2024-02-01

EUN LLEE

#	Article	IF	CITATIONS
1	Reversal of Lamina Cribrosa Displacement and Thickness after Trabeculectomy in Glaucoma. Ophthalmology, 2012, 119, 1359-1366.	2.5	189
2	Visualization of the Lamina Cribrosa Using Enhanced Depth Imaging Spectral-Domain Optical Coherence Tomography. American Journal of Ophthalmology, 2011, 152, 87-95.e1.	1.7	183
3	OCT Angiography of the Peripapillary Retina in Primary Open-Angle Glaucoma. , 2016, 57, 6265.		131
4	Reversal of Lamina Cribrosa Displacement after Intraocular Pressure Reduction in Open-Angle Glaucoma. Ophthalmology, 2013, 120, 553-559.	2.5	124
5	Parapapillary Choroidal Microvasculature Dropout in Glaucoma. Ophthalmology, 2017, 124, 1209-1217.	2.5	99
6	Differentiation of Parapapillary Atrophy Using Spectral-Domain Optical Coherence Tomography. Ophthalmology, 2013, 120, 1790-1797.	2.5	93
7	Microstructure of β-Zone Parapapillary Atrophy and Rate of Retinal Nerve Fiber Layer Thinning in Primary Open-Angle Glaucoma. Ophthalmology, 2014, 121, 1341-1349.	2.5	87
8	Influence of Lamina Cribrosa Thickness and Depth on the Rate of Progressive Retinal Nerve Fiber Layer Thinning. Ophthalmology, 2015, 122, 721-729.	2.5	83
9	Parapapillary Deep-Layer Microvasculature Dropout in Glaucoma: Topographic Association With Glaucomatous Damage. , 2017, 58, 3004.		80
10	Diagnostic Power of Lamina Cribrosa Depth and Curvature in Glaucoma. , 2017, 58, 755.		75
11	Central Visual Field Damage and Parapapillary Choroidal Microvasculature Dropout in Primary Open-Angle Glaucoma. Ophthalmology, 2018, 125, 588-596.	2.5	75
12	Recent Structural Alteration of the Peripheral Lamina Cribrosa Near the Location of Disc Hemorrhage in Glaucoma. , 2014, 55, 2805.		73
13	Ability of Stratus OCT to Detect Progressive Retinal Nerve Fiber Layer Atrophy in Glaucoma. , 2009, 50, 662.		72
14	Reduction of the Lamina Cribrosa Curvature After Trabeculectomy in Glaucoma. , 2016, 57, 5006.		57
15	Underlying Microstructure of Parapapillary Deep-Layer Capillary Dropout Identified by Optical Coherence Tomography Angiography. , 2017, 58, 1621.		57
16	Evaluation of Parapapillary Choroidal Microvasculature Dropout and Progressive Retinal Nerve Fiber Layer Thinning in Patients With Glaucoma. JAMA Ophthalmology, 2019, 137, 810.	1.4	54
17	Anterior Lamina Cribrosa Insertion in Primary Open-Angle Glaucoma Patients and Healthy Subjects. PLoS ONE, 2014, 9, e114935.	1.1	52
18	β-Zone Parapapillary Atrophy and the Rate of Retinal Nerve Fiber Layer Thinning in Glaucoma. , 2011, 52, 4422.		51

#	Article	IF	CITATIONS
19	Peripapillary Retinoschisis in Glaucomatous Eyes. PLoS ONE, 2014, 9, e90129.	1.1	50
20	Lamina Cribrosa Reversal after Trabeculectomy and the Rate of Progressive Retinal Nerve Fiber Layer Thinning. Ophthalmology, 2015, 122, 2234-2242.	2.5	48
21	Microvascular Changes in Peripapillary and Optic Nerve Head Tissues After Trabeculectomy in Primary Open-Angle Glaucoma. , 2018, 59, 4614.		44
22	Lamina cribrosa thickness is not correlated with central corneal thickness or axial length in healthy eyes. Graefe's Archive for Clinical and Experimental Ophthalmology, 2013, 251, 847-854.	1.0	40
23	Parapapillary Deep-Layer Microvasculature Dropout in Primary Open-Angle Glaucoma Eyes With a Parapapillary Î ³ -Zone. , 2017, 58, 5673.		40
24	Variation of Lamina Cribrosa Depth Following Trabeculectomy. , 2013, 54, 5392.		34
25	Juxtapapillary choroid is thinner in normalâ€ŧension glaucoma than in healthy eyes. Acta Ophthalmologica, 2016, 94, e697-e708.	0.6	34
26	Effect of Diabetic Macular Edema on Peripapillary Retinal Nerve Fiber Layer Thickness Profiles. , 2014, 55, 4213.		32
27	Lamina Cribrosa Morphology Predicts Progressive Retinal Nerve Fiber Layer Loss In Eyes with Suspected Glaucoma. Scientific Reports, 2018, 8, 738.	1.6	32
28	Comparison of the Abilities of SD-OCT and SS-OCT in Evaluating the Thickness of the Macular Inner Retinal Layer for Glaucoma Diagnosis. PLoS ONE, 2016, 11, e0147964.	1.1	31
29	Topographic correlation between juxtapapillary choroidal thickness and parapapillary deep-layer microvasculature dropout in primary open-angle glaucoma. British Journal of Ophthalmology, 2018, 102, 1134-1140.	2.1	29
30	Microstructure of the Optic Disc Pit in Open-Angle Glaucoma. Ophthalmology, 2014, 121, 2098-2106.e2.	2.5	28
31	Comparison of the Deep Optic Nerve Head Structure between Normal-Tension Glaucoma and Nonarteritic Anterior Ischemic Optic Neuropathy. PLoS ONE, 2016, 11, e0150242.	1.1	28
32	Topographic Correlation Between Juxtapapillary Choroidal Thickness and Microstructure of Parapapillary Atrophy. Ophthalmology, 2016, 123, 1965-1973.	2.5	28
33	Influence of Choroidal Microvasculature Dropout on the Rate of Glaucomatous Progression. Ophthalmology Glaucoma, 2020, 3, 25-31.	0.9	27
34	Glaucoma Diagnostic Ability of the New Circumpapillary Retinal Nerve Fiber Layer Thickness Analysis Based on Bruch's Membrane Opening. , 2016, 57, 4194.		26
35	Improved Reproducibility in Measuring the Laminar Thickness on Enhanced Depth Imaging SD-OCT Images Using Maximum Intensity Projection. , 2012, 53, 7576.		25
36	Influence of Translaminar Pressure Dynamics on the Position of the Anterior Lamina Cribrosa Surface. , 2015, 56, 2833.		25

#	Article	IF	CITATIONS
37	Pseudophakic Macular Edema in Primary Open-Angle Glaucoma: A Prospective Study Using Spectral-Domain Optical Coherence Tomography. American Journal of Ophthalmology, 2017, 179, 97-109.	1.7	24
38	Comparison between Lamina Cribrosa Depth and Curvature as a Predictor of Progressive Retinal Nerve Fiber Layer Thinning in Primary Open-Angle Glaucoma. Ophthalmology Glaucoma, 2018, 1, 44-51.	0.9	24
39	Structural Characteristics of the Acquired Optic Disc Pit and the Rate of Progressive Retinal Nerve Fiber Layer Thinning in Primary Open-Angle Glaucoma. JAMA Ophthalmology, 2015, 133, 1151.	1.4	23
40	Comparison of the Pattern of Retinal Ganglion Cell Damage Between Patients With Compressive and Glaucomatous Optic Neuropathies. , 2015, 56, 7012.		22
41	Evaluation of Peripapillary Choroidal Microvasculature to Detect Glaucomatous Damage in Eyes With High Myopia. Journal of Glaucoma, 2020, 29, 39-45.	0.8	22
42	Glaucoma-like Parapapillary Choroidal Microvasculature Dropout in Patients with Compressive Optic Neuropathy. Ophthalmology, 2020, 127, 1652-1662.	2.5	21
43	Lamina Cribrosa Morphology in Glaucomatous Eyes with Hemifield Defect in a Korean Population. Ophthalmology, 2019, 126, 692-701.	2.5	20
44	Ocular and Clinical Characteristics Associated with the Extent of Posterior Lamina Cribrosa Curve in Normal Tension Glaucoma. Scientific Reports, 2018, 8, 961.	1.6	19
45	Elucidation of the Strongest Factors Influencing Rapid Retinal Nerve Fiber Layer Thinning in Glaucoma. , 2019, 60, 3343.		19
46	Association of Corneal Hysteresis With Lamina Cribrosa Curvature in Primary Open Angle Glaucoma. , 2019, 60, 4171.		19
47	Comparison of vascular–function and structure–function correlations in glaucomatous eyes with high myopia. British Journal of Ophthalmology, 2020, 104, 807-812.	2.1	18
48	Retinal Nerve Fiber Layer Thickness Measurement Comparison Using Spectral Domain and Swept Source Optical Coherence Tomography. Korean Journal of Ophthalmology: KJO, 2016, 30, 140.	0.5	17
49	Anterior Optic Nerve Head Perfusion is Dependent on Adjacent Parapapillary Choroidal perfusion. Scientific Reports, 2019, 9, 10999.	1.6	17
50	Factors Associated with the Retinal Nerve Fiber Layer Loss after Acute Primary Angle Closure: A Prospective EDI-OCT Study. PLoS ONE, 2017, 12, e0168678.	1.1	15
51	Dynamic Range of the Peripapillary Retinal Vessel Density for Detecting Glaucomatous Visual Field Damage. Ophthalmology Glaucoma, 2019, 2, 103-110.	0.9	15
52	Microstructure of Nonjuxtapapillary Microvasculature Dropout in Healthy Myopic Eyes. , 2020, 61, 36.		15
53	Comparison of Lamina Cribrosa Morphology in Eyes with Ocular Hypertension and Normal-Tension Glaucoma. , 2020, 61, 4.		14
54	Intereye Difference in the Microstructure of Parapapillary Atrophy in Unilateral Primary Open-Angle Glaucoma. , 2016, 57, 4187.		13

#	Article	IF	CITATIONS
55	Increased CSF tau level is correlated with decreased lamina cribrosa thickness. Alzheimer's Research and Therapy, 2016, 8, 6.	3.0	13
56	Intereye Comparison of Lamina Cribrosa Curvature in Normal Tension Glaucoma Patients With Unilateral Damage. , 2019, 60, 2423.		13
57	Progressive retinal nerve fibre layer thinning and choroidal microvasculature dropout at the location of disc haemorrhage in glaucoma. British Journal of Ophthalmology, 2021, 105, 674-680.	2.1	12
58	Anterior Lamina Cribrosa Surface Depth in Open-Angle Glaucoma: Relationship with the Position of the Central Retinal Vessel Trunk. PLoS ONE, 2016, 11, e0158443.	1.1	11
59	Comparison of the Deep Optic Nerve Structures in Superior Segmental Optic Nerve Hypoplasia and Primary Open-Angle Glaucoma. Journal of Glaucoma, 2016, 25, 648-656.	0.8	11
60	Lamina Cribrosa Curvature in Healthy Korean Eyes. Scientific Reports, 2019, 9, 1756.	1.6	11
61	Parapapillary choroidal microvasculature dropout in nonglaucomatous healthy eyes. Acta Ophthalmologica, 2020, 98, e754-e760.	0.6	9
62	Lamina Cribrosa Moves Anteriorly After Trabeculectomy in Myopic Eyes. , 2020, 61, 36.		8
63	Steeper structure-function relationship in eyes with than without a parapapillary deep-layer microvasculature dropout. Scientific Reports, 2018, 8, 14182.	1.6	7
64	Delayed-onset interface fluid syndrome after LASIK following phacotrabeculectomy. BMC Ophthalmology, 2019, 19, 74.	0.6	7
65	Focal lamina cribrosa defects are not associated with steep lamina cribrosa curvature but with choroidal microvascular dropout. Scientific Reports, 2020, 10, 6761.	1.6	7
66	Relationship of Spontaneous Retinal Vein Pulsation with Ocular Circulatory Cycle. PLoS ONE, 2014, 9, e97943.	1.1	7
67	Effect of Smartphone Use on Intraocular Pressure. Scientific Reports, 2019, 9, 18802.	1.6	6
68	Relationship between lamina cribrosa curvature and the microvasculature in treatment-naÃ ⁻ ve eyes. British Journal of Ophthalmology, 2020, 104, 398-403.	2.1	6
69	Cognitive Impairment and Lamina Cribrosa Thickness in Primary Open-Angle Glaucoma. Translational Vision Science and Technology, 2020, 9, 17.	1.1	6
70	Intereye Comparison of the Characteristics of the Peripapillary Choroid in Patients with Unilateral Normal-Tension Glaucoma. Ophthalmology Glaucoma, 2021, 4, 512-521.	0.9	6
71	Parapapillary Intrachoroidal Cavitation in Glaucoma: Association with Choroidal Microvasculature Dropout. Korean Journal of Ophthalmology: KJO, 2021, 35, 44-50.	0.5	5
72	Morphologic Changes in the Lamina Cribrosa Upon Intraocular Pressure Lowering in Patients With Normal Tension Glaucoma. , 2022, 63, 23.		5

#	Article	lF	CITATIONS
73	Disc haemorrhage associated with an enlarged peripapillary intrachoroidal cavitation in a non-glaucomatous myopic eye: a case report. BMC Ophthalmology, 2015, 15, 145.	0.6	4
74	In Vivo Cross-sectional Imaging of a Degrading Dexamethasone Intravitreal Implant That Became Attached to the Macula. JAMA Ophthalmology, 2015, 133, 350.	1.4	4
75	Development of Optic Disc Torsion in Children. Korean Journal of Ophthalmology: KJO, 2019, 33, 173.	0.5	4
76	Comparison of Optic Nerve Head Microvasculature Between Normal-Tension Glaucoma and Nonarteritic Anterior Ischemic Optic Neuropathy. , 2021, 62, 15.		4
77	PERIPAPILLARY MICROVASCULATURE OF THE RETINA AND CHORIOCAPILLARIS IN UNINVOLVED FELLOW EYES OF UNILATERAL RETINAL VEIN OCCLUSION PATIENTS. Retina, 2022, 42, 159-167.	1.0	4
78	Progressive Retinal Nerve Fiber Layer Atrophy Associated With Enlarging Peripapillary Pit. Journal of Glaucoma, 2017, 26, e79-e81.	0.8	2
79	Association between corneal refractive surgery and the prevalence of glaucoma: Korea National Health and Nutrition Examination Survey 2010–2012. British Journal of Ophthalmology, 2022, 106, 172-176.	2.1	2
80	Topographic Relationship with a Retinal Nerve Fiber Layer Defect Differs between <i>β</i> -Zone and <i>γ</i> -Zone Parapapillary Atrophy. Journal of Ophthalmology, 2020, 2020, 1-10.	0.6	2
81	Differentiation of Nonarteritic Anterior Ischemic Optic Neuropathy from Normal Tension Glaucoma by Comparison of the Lamina Cribrosa. , 2020, 61, 21.		2
82	Congenital optic tract syndrome misdiagnosed with normal tension glaucoma. Graefe's Archive for Clinical and Experimental Ophthalmology, 2016, 254, 2481-2483.	1.0	1
83	Monitoring Progression in Advanced Glaucoma. Ophthalmology, 2020, 127, 1053.	2.5	1
84	OCT Angiography. , 2021, , 71-88.		1
85	A Case of Bilateral Iris Involvement of Lymphoma Successfully Managed with Intravitreal Methotrexate Injection. Korean Journal of Ophthalmology: KJO, 2020, 34, 498-499.	0.5	1
86	Results of the Glaucoma Awareness and Knowledge Survey: Performed for the World Glaucoma Week Event. Journal of the Korean Glaucoma Society, 2021, 10, 31.	0.0	1
87	Development of Glaucoma after Myopic Optic Disc Change in a Teenage Patient. Ophthalmology, 2022, 129, 333.	2.5	1
88	Reply. American Journal of Ophthalmology, 2017, 184, 189.	1.7	0
89	Reply. American Journal of Ophthalmology, 2017, 181, 181-182.	1.7	0
90	Comparison of Intraocular Pressure via Goldmann-applanation Tonometry and TonoPen in Thyroid-associated Ophthalmopathy Accompanying Restrictive Strabismus. Journal of Korean Ophthalmological Society, 2017, 58, 685.	0.0	0

#	Article	IF	CITATIONS
91	Response to: Evaluation of Peripapillary Choroidal Microvasculature to Detect Glaucomatous Damage in Eyes With High Myopia. Journal of Glaucoma, 2020, 29, e98-e99.	0.8	0
92	Lamina Cribrosa Imaging. , 2021, , 55-70.		0
93	Diagnostic Capability of 3-Dimensional Optic Nerve Head Analysis Using Stereo Retina Camera in Glaucoma. Journal of the Korean Glaucoma Society, 2017, 6, 1.	0.0	0
94	Finite element analysis of eyeball with its microstructure by use of homogenization method. Journal of Mechanical Science and Technology, 2020, 34, 5139-5153.	0.7	0
95	Natural Course of Acute Primary Angle Closure without Subsequent Medical Treatment after Surgical Resolution of an Acute Episode. Journal of the Korean Glaucoma Society, 2021, 10, 37.	0.0	0
96	Impact of peripapillary retinoschisis on visual field test results in glaucomatous eyes. British Journal of Ophthalmology, 2023, 107, 1281-1285.	2.1	0
97	Difference in topographic morphology of optic nerve head and neuroretinal rim between normal tension glaucoma and central retinal artery occlusion. Scientific Reports, 2022, 12, .	1.6	0