List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2104555/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low Fouling Polysulfobetaines with Variable Hydrophobic Content. Macromolecular Rapid Communications, 2022, 43, e2100589.	2.0	11
2	Reduction of biofilm accumulation by constant and alternating potentials in static and dynamic field experiments. Biofouling, 2022, 38, 119-130.	0.8	2
3	Amphiphilic Alginate-Based Layer-by-Layer Coatings Exhibiting Resistance against Nonspecific Protein Adsorption and Marine Biofouling. ACS Applied Materials & Interfaces, 2022, 14, 16062-16073.	4.0	8
4	Spatial Distribution of Intracellular Ion Concentrations in Aggregateâ€Forming HeLa Cells Analyzed by μâ€XRF Imaging. ChemistryOpen, 2022, 11, e202200024.	0.9	4
5	In Cellulo Analysis of Huntingtin Inclusion Bodies by Cryogenic Nanoprobe SAXS. ChemSystemsChem, 2021, 3, e2000050.	1.1	4
6	Visible light-induced controlled surface grafting polymerization of hydroxyethyl methacrylate from isopropylthioxanthone semipinacol-terminated organic monolayers. Polymer Chemistry, 2021, 12, 618-628.	1.9	9
7	Micro x-ray fluorescence analysis of trace element distribution in frozen hydrated HeLa cells at the P06 beamline at Petra III. Biointerphases, 2021, 16, 011004.	0.6	4
8	Layer-by-Layer Deposited Hybrid Polymer Coatings Based on Polysaccharides and Zwitterionic Silanes with Marine Antifouling Properties. ACS Applied Bio Materials, 2021, 4, 2385-2397.	2.3	13
9	X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano, 2021, 15, 3754-3807.	7.3	60
10	Sulfobetaine Methacrylate Polymers of Unconventional Polyzwitterion Architecture and Their Antifouling Properties. Biomacromolecules, 2021, 22, 1494-1508.	2.6	22
11	Superhydrophobic Candle Soot as a Low Fouling Stable Coating on Water Treatment Membrane Feed Spacers. ACS Applied Bio Materials, 2021, 4, 4191-4200.	2.3	19
12	Amphiphilic Zwitterionic Acrylate/Methacrylate Copolymers for Marine Fouling-Release Coatings. Langmuir, 2021, 37, 5591-5600.	1.6	17
13	Effect of Multilayer Termination on Nonspecific Protein Adsorption and Antifouling Activity of Alginate-Based Layer-by-Layer Coatings. Langmuir, 2021, 37, 5950-5963.	1.6	20
14	Control of Marine Bacteria and Diatom Biofouling by Constant and Alternating Potentials. Langmuir, 2021, 37, 7464-7472.	1.6	2
15	Electrochemically activated laser-induced graphene coatings against marine biofouling. Applied Surface Science, 2021, 569, 150853.	3.1	20
16	Synthesis and Characterization of Dendritic and Linear Glycol Methacrylates and Their Performance as Marine Antifouling Coatings. ACS Applied Materials & Interfaces, 2021, 13, 6659-6669.	4.0	20
17	Zwitterionic Peptides Reduce Accumulation of Marine and Freshwater Biofilm Formers. ACS Applied Materials & Interfaces, 2021, 13, 49682-49691.	4.0	20
18	Rational Designed Hybrid Peptides Show up to a 6-Fold Increase in Antimicrobial Activity and Demonstrate Different Ultrastructural Changes as the Parental Peptides Measured by BioSAXS. Frontiers in Pharmacology, 2021, 12, 769739.	1.6	6

#	Article	IF	CITATIONS
19	Thermoregeneration of Plastrons on Superhydrophobic Coatings for Sustained Antifouling Properties. Advanced Engineering Materials, 2020, 22, 1900806.	1.6	21
20	Synthesis of Novel Sulfobetaine Polymers with Differing Dipole Orientations in Their Side Chains, and Their Effects on the Antifouling Properties. Macromolecular Rapid Communications, 2020, 41, e1900447.	2.0	35
21	Effect of ozone stress on the intracellular metabolites from Cobetia marina. Analytical and Bioanalytical Chemistry, 2020, 412, 5853-5861.	1.9	5
22	Fully Convolutional Neural Network for Detection and Counting of Diatoms on Coatings after Short-Term Field Exposure. Environmental Science & Technology, 2020, 54, 10022-10030.	4.6	18
23	Degradable hyaluronic acid/chitosan polyelectrolyte multilayers with marine fouling-release properties. Biofouling, 2020, 36, 1-22.	0.8	8
24	Sol–Gel-Based Hybrid Materials as Antifouling and Fouling-Release Coatings for Marine Applications. ACS Applied Materials & Interfaces, 2020, 12, 53286-53296.	4.0	22
25	Effects of crosslink density in zwitterionic hydrogel coatings on their antifouling performance and susceptibility to silt uptake. Biofouling, 2020, 36, 646-659.	0.8	20
26	Effect of Dipole Orientation in Mixed, Charge-Equilibrated Self-assembled Monolayers on Protein Adsorption and Marine Biofouling. ACS Applied Materials & Interfaces, 2020, 12, 50953-50961.	4.0	11
27	Low Fouling Peptides with an All (<scp>d</scp>) Amino Acid Sequence Provide Enhanced Stability against Proteolytic Degradation While Maintaining Low Antifouling Properties. Langmuir, 2020, 36, 10996-11004.	1.6	16
28	X-ray fluorescence analysis of metal distributions in cryogenic biological samples using large-acceptance-angle SDD detection and continuous scanning at the Hard X-ray Micro/Nano-Probe beamline PO6 at PETRA III. Journal of Synchrotron Radiation, 2020, 27, 60-66.	1.0	15
29	Microfluidic accumulation assay to quantify the attachment of the marine bacterium <i>Cobetia marina</i> on fouling-release coatings. Biointerphases, 2020, 15, 031014.	0.6	14
30	Amphiphilic Dicyclopentenyl/Carboxybetaine-Containing Copolymers for Marine Fouling-Release Applications. ACS Applied Materials & Interfaces, 2020, 12, 34148-34160.	4.0	30
31	α-Aminoisobutyric Acid-Stabilized Peptide SAMs with Low Nonspecific Protein Adsorption and Resistance against Marine Biofouling. ACS Sustainable Chemistry and Engineering, 2020, 8, 2665-2671.	3.2	11
32	Soft X-ray diffraction patterns measured by a LiF detector with sub-micrometre resolution and an ultimate dynamic range. Journal of Synchrotron Radiation, 2020, 27, 625-632.	1.0	4
33	Molecular Design of Zwitterionic Polymer Interfaces: Searching for the Difference. Langmuir, 2019, 35, 1056-1071.	1.6	98
34	BioSAXS Measurements Reveal That Two Antimicrobial Peptides Induce Similar Molecular Changes in Gram-Negative and Gram-Positive Bacteria. Frontiers in Pharmacology, 2019, 10, 1127.	1.6	14
35	Layer-by-layer constructed hyaluronic acid/chitosan multilayers as antifouling and fouling-release coatings. Biointerphases, 2019, 14, 051002.	0.6	24
36	Microfluidic Shear Force Assay to Determine Cell Adhesion Forces. Methods in Molecular Biology, 2019, 2017, 71-84.	0.4	7

#	Article	IF	CITATIONS
37	Surface Modification by Polyzwitterions of the Sulfabetaine-Type, and Their Resistance to Biofouling. Polymers, 2019, 11, 1014.	2.0	25
38	Sediment challenge to promising ultra-low fouling hydrophilic surfaces in the marine environment. Biofouling, 2019, 35, 454-462.	0.8	28
39	Antifouling Properties of Dendritic Polyglycerols against Marine Macrofouling Organisms. Langmuir, 2019, 35, 16568-16575.	1.6	23
40	Low-Fouling Thin Hydrogel Coatings Made of Photo-Cross-Linked Polyzwitterions. Langmuir, 2019, 35, 1552-1562.	1.6	60
41	Amphiphilic Alginates for Marine Antifouling Applications. Biomacromolecules, 2018, 19, 402-408.	2.6	40
42	Topographic cues guide the attachment of diatom cells and algal zoospores. Biofouling, 2018, 34, 86-97.	0.8	19
43	Encapsulation Efficiency and Release Behavior of Fat Microcapsules with Lipophilic Emulsifiers. Chemie-Ingenieur-Technik, 2018, 90, 562-567.	0.4	1
44	A Multiperspective Approach to Solvent Regulation of Enzymatic Activity: HMG 0A Reductase. ChemBioChem, 2018, 19, 153-158.	1.3	3
45	Fouling-Release Properties of Dendritic Polyglycerols against Marine Diatoms. ACS Applied Materials & Interfaces, 2018, 10, 34965-34973.	4.0	24
46	Dynamic field testing of coating chemistry candidates by a rotating disk system. Biofouling, 2018, 34, 398-409.	0.8	15
47	Structure and Chemical Organization in Damselfly Calopteryx haemorrhoidalis Wings: A Spatially Resolved FTIR and XRF Analysis with Synchrotron Radiation. Scientific Reports, 2018, 8, 8413.	1.6	11
48	Quantitative ptychographic bio-imaging in the water window. Optics Express, 2018, 26, 1237.	1.7	22
49	Exploring the Long-Term Hydrolytic Behavior of Zwitterionic Polymethacrylates and Polymethacrylamides. Polymers, 2018, 10, 639.	2.0	32
50	Parallelized microfluidic diatom accumulation assay to test fouling-release coatings. Biointerphases, 2018, 13, 041007.	0.6	22
51	Morphological analysis of cerium oxide stabilized nanoporous gold catalysts by soft X-ray ASAXS. RSC Advances, 2017, 7, 45344-45350.	1.7	8
52	Data compression strategies for ptychographic diffraction imaging. Advanced Optical Technologies, 2017, 6, 475-483.	0.9	13
53	Microfluidic accumulation assay probes attachment of biofilm forming diatom cells. Biofouling, 2017, 33, 531-543.	0.8	37
54	CD44 mediates the catch-bond activated rolling of HEPG2Iso epithelial cancer cells on hyaluronan. Cell Adhesion and Migration, 2017, 11, 476-487.	1.1	12

#	Article	IF	CITATIONS
55	Compositional fingerprint of soy sauces via hydrophobic surface interaction. Food Chemistry, 2017, 218, 256-260.	4.2	6
56	High-dynamic-range water window ptychography. Journal of Physics: Conference Series, 2017, 849, 012027.	0.3	2
57	Catch bond interaction allows cells to attach to strongly hydrated interfaces. Biointerphases, 2016, 11, 018905.	0.6	3
58	Use of small-angle X-ray scattering to resolve intracellular structure changes of <i>Escherichia coli</i> cells induced by antibiotic treatment. Journal of Applied Crystallography, 2016, 49, 2210-2216.	1.9	18
59	Attachment of Algal Cells to Zwitterionic Self-Assembled Monolayers Comprised of Different Anionic Compounds. Langmuir, 2016, 32, 5663-5671.	1.6	21
60	In vivo and in situ synchrotron radiation-based μ-XRF reveals elemental distributions during the early attachment phase of barnacle larvae and juvenile barnacles. Analytical and Bioanalytical Chemistry, 2016, 408, 1487-1496.	1.9	24
61	Tuning the Cell Adhesion on Biofunctionalized Nanoporous Organic Frameworks. Advanced Functional Materials, 2016, 26, 8455-8462.	7.8	29
62	lons and solvation at biointerfaces. Biointerphases, 2016, 11, 018801.	0.6	7
63	Imaging SPR combined with stereoscopic 3D tracking to study barnacle cyprid–surface interactions. Surface Science, 2016, 643, 172-177.	0.8	9
64	Resistance of Amphiphilic Polysaccharides against Marine Fouling Organisms. Biomacromolecules, 2016, 17, 897-904.	2.6	32
65	Small angle X-ray scattering as a high-throughput method to classify antimicrobial modes of action. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 918-925.	1.4	33
66	Water window ptychographic imaging with characterized coherent X-rays. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s155-s155.	0.0	0
67	Shear-Induced Detachment of Polystyrene Beads from SAM-Coated Surfaces. Langmuir, 2015, 31, 11105-11112.	1.6	9
68	Water window ptychographic imaging with characterized coherent X-rays. Journal of Synchrotron Radiation, 2015, 22, 819-827.	1.0	17
69	Microfluidic detachment assay to probe the adhesion strength of diatoms. Biofouling, 2015, 31, 469-480.	0.8	22
70	Classification of the pre-settlement behaviour of barnacle cyprids. Journal of the Royal Society Interface, 2015, 12, 20141104.	1.5	14
71	Holographic microscopy provides new insights into the settlement of zoospores of the green algaUlva linzaon cationic oligopeptide surfaces. Biofouling, 2015, 31, 229-239.	0.8	18
72	Nano-Scale Morphology of Melanosomes Revealed by Small-Angle X-Ray Scattering. PLoS ONE, 2014, 9, e90884.	1.1	11

#	Article	IF	CITATIONS
73	Barnacle cyprid motility and distribution in the water column as an indicator of the settlement-inhibiting potential of nontoxic antifouling chemistries. Biofouling, 2014, 30, 1055-1065.	0.8	11
74	Influence of zwitterionic SAMs on protein adsorption and the attachment of algal cells. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1530-1539.	1.9	20
75	Conditioning of self-assembled monolayers at two static immersion test sites along the east coast of Florida and its effect on early fouling development. Biofouling, 2014, 30, 1011-1021.	0.8	34
76	Ptychographic X-ray Microscopy with the Vacuum Imaging Apparatus HORST. Zeitschrift Fur Physikalische Chemie, 2014, 228, 1089-1104.	1.4	4
77	Differences between healthy hematopoietic progenitors and leukemia cells with respect to CD44 mediated rolling versus adherence behavior on hyaluronic acid coated surfaces. Biomaterials, 2014, 35, 1411-1419.	5.7	22
78	Plerixafor induces the rapid and transient release of stromal cell-derived factor-1 alpha from human mesenchymal stromal cells and influences the migration behavior of human hematopoietic progenitor cells. Cell and Tissue Research, 2014, 355, 315-326.	1.5	14
79	Support and challenges to the melanosomal casing model based on nanoscale distribution of metals within iris melanosomes detected by <scp>X</scp> â€ray fluorescence analysis. Pigment Cell and Melanoma Research, 2014, 27, 831-834.	1.5	13
80	Swimming Behavior of Pseudomonas aeruginosa Studied by Holographic 3D Tracking. PLoS ONE, 2014, 9, e87765.	1.1	46
81	Controlled growth of protein resistant PHEMA brushes via S-RAFT polymerization. Journal of Materials Chemistry B, 2013, 1, 6027.	2.9	51
82	Adherent cells avoid polarization gradients on periodically poled LiTaO3 ferroelectrics. Biointerphases, 2013, 8, 27.	0.6	13
83	Drift correction in ptychographic diffractive imaging. Ultramicroscopy, 2013, 126, 44-47.	0.8	71
84	Hot Embossed Microtopographic Gradients Reveal Morphological Cues That Guide the Settlement of Zoospores. Langmuir, 2013, 29, 1093-1099.	1.6	32
85	Adhesion of Marine Fouling Organisms on Hydrophilic and Amphiphilic Polysaccharides. Langmuir, 2013, 29, 4039-4047.	1.6	95
86	Slippery Liquid-Infused Porous Surfaces Showing Marine Antibiofouling Properties. ACS Applied Materials & amp; Interfaces, 2013, 5, 10074-10080.	4.0	251
87	Surface anchored metal-organic frameworks as stimulus responsive antifouling coatings. Biointerphases, 2013, 8, 29.	0.6	34
88	Single pulse coherence measurements in the water window at the free-electron laser FLASH. Optics Express, 2013, 21, 13005.	1.7	13
89	Correlative Imaging of Structural and Elemental Composition of Bacterial Biofilms. Journal of Physics: Conference Series, 2013, 463, 012053.	0.3	2
90	Spatial and temporal coherence properties of single free-electron laser pulses. Optics Express, 2012, 20, 17480.	1.7	106

#	Article	IF	CITATIONS
91	Hologram reconstruction corrected for measurements through layers with different refractive indices in digital in-line holographic microscopy. Applied Optics, 2012, 51, 3416.	0.9	5
92	Conditioning of surfaces by macromolecules and its implication for the settlement of zoospores of the green alga <i>Ulva linza</i> . Biofouling, 2012, 28, 501-510.	0.8	59
93	Settlement Behavior of Zoospores of <i>Ulva linza</i> During Surface Selection Studied by Digital Holographic Microscopy. Biointerphases, 2012, 7, 33.	0.6	40
94	Three Dimensional Tracking of Exploratory Behavior of Barnacle Cyprids Using Stereoscopy. Biointerphases, 2012, 7, 50.	0.6	11
95	Surface Sensing and Settlement Strategies of Marine Biofouling Organisms. Biointerphases, 2012, 7, 63.	0.6	36
96	Dynamics of colloidal crystals studied by pump-probe experiments at FLASH. Physical Review B, 2012, 86, .	1.1	6
97	The Biocompatibility of Metal–Organic Framework Coatings: An Investigation on the Stability of SURMOFs with Regard to Water and Selected Cell Culture Media. Langmuir, 2012, 28, 6877-6884.	1.6	68
98	A Quantitative 3D Motility Analysis of Trypanosoma brucei by Use of Digital In-line Holographic Microscopy. PLoS ONE, 2012, 7, e37296.	1.1	29
99	Microfluidic Assay to Quantify the Adhesion of Marine Bacteria. Biointerphases, 2012, 7, 26.	0.6	30
100	Flow conditions in the vicinity of microstructured interfaces studied by holography and implications for the assembly of artificial actin networks. Physical Chemistry Chemical Physics, 2011, 13, 13395.	1.3	10
101	Shear Stress Regulates Adhesion and Rolling of CD44+ Leukemic and Hematopoietic Progenitor Cells on Hyaluronan. Biophysical Journal, 2011, 101, 585-593.	0.2	50
102	Chemical Contrast in Soft X-Ray Ptychography. Physical Review Letters, 2011, 107, 208101.	2.9	82
103	Fibroblast adhesion on unidirectional polymeric nanofilms. Biointerphases, 2011, 6, 158-163.	0.6	9
104	Ptychographic coherent x-ray diffractive imaging in the water window. Optics Express, 2011, 19, 1037.	1.7	56
105	X-ray holographic microscopy with zone plates applied to biological samples in the water window using 3rd harmonic radiation from the free-electron laser FLASH. Optics Express, 2011, 19, 11059.	1.7	36
106	Digital in-line X-ray holography with zone plates. Ultramicroscopy, 2011, 111, 1131-1136.	0.8	19
107	Understanding What we Cannot See: Automatic Analysis of 4D Digital In-Line Holographic Microscopy Data. Lecture Notes in Computer Science, 2011, , 52-76.	1.0	2
108	Interaction of Zoospores of the Green Alga <i>Ulva</i> with Bioinspired Micro―and Nanostructured Surfaces Prepared by Polyelectrolyte Layerâ€byâ€Layer Selfâ€Assembly. Advanced Functional Materials, 2010, 20, 1984-1993.	7.8	98

#	Article	IF	CITATIONS
109	Soft X-ray holographic microscopy of chromosomes with high aspect ratio pinholes. Journal of Biotechnology, 2010, 149, 238-242.	1.9	15
110	Coherent imaging of biological samples with femtosecond pulses at the free-electron laser FLASH. New Journal of Physics, 2010, 12, 035003.	1.2	75
111	Single-pulse resonant magnetic scattering using a soft x-ray free-electron laser. Physical Review B, 2010, 81, .	1.1	65
112	Classification of Swimming Microorganisms Motion Patterns in 4D Digital In-Line Holography Data. Lecture Notes in Computer Science, 2010, , 283-292.	1.0	4
113	The role of "inert―surface chemistry in marine biofouling prevention. Physical Chemistry Chemical Physics, 2010, 12, 4275.	1.3	265
114	Quantification of the adhesion strength of fibroblast cells on ethylene glycol terminated self-assembled monolayers by a microfluidic shear force assay. Physical Chemistry Chemical Physics, 2010, 12, 4498.	1.3	59
115	Resonant magnetic scattering with soft x-ray pulses from a free-electron laser operating at 1.59 nm. Physical Review B, 2009, 79, .	1.1	34
116	Coherent-Pulse 2D Crystallography Using a Free-Electron Laser X-Ray Source. Physical Review Letters, 2009, 102, 035502.	2.9	47
117	Analysis of holographic microscopy data to quantitatively investigate three-dimensional settlement dynamics of algal zoospores in the vicinity of surfaces. European Physical Journal E, 2009, 30, 141-148.	0.7	24
118	Resistance of Polysaccharide Coatings to Proteins, Hematopoietic Cells, and Marine Organisms. Biomacromolecules, 2009, 10, 907-915.	2.6	81
119	Physicochemical Properties of (Ethylene Glycol)-Containing Self-Assembled Monolayers Relevant for Protein and Algal Cell Resistance. Langmuir, 2009, 25, 10077-10082.	1.6	129
120	pH-Amplified Exponential Growth Multilayers: A Facile Method to Develop Hierarchical Micro- and Nanostructured Surfaces. Langmuir, 2009, 25, 672-675.	1.6	105
121	Digital In-line Holography with femtosecond VUV radiation provided by the free-electron laser FLASH. Optics Express, 2009, 17, 8220.	1.7	30
122	Zeta potential of motile spores of the green algaUlva linzaand the influence of electrostatic interactions on spore settlement and adhesion strength. Biointerphases, 2009, 4, 7-11.	0.6	55
123	Automatic tracking of swimming microorganisms in 4D digital in-line holography data. , 2009, , .		11
124	Lensless imaging of biological samples with soft X-rays. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s73-s74.	0.3	0
125	Advanced nanostructures for the control of biofouling: The FP6 EU Integrated Project AMBIO. Biointerphases, 2008, 3, IR1-IR5. Temperature-dependent evolution of the electronic and local atomic structure in the cubic colossal	0.6	75
126	magnetoresistive manganite <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mi mathvariant="normal">La<mml:mrow><mml:mn>1</mml:mn><mml:mo>â^'</mml:mo><ml:mi>x< mathvariant="normal">Sr<mml:mi>x</mml:mi></ml:mi></mml:mrow></mml:mi </mml:msub><mml:mi< td=""><td>/mml:mi> <</td><td>/mml:mrow><</td></mml:mi<></mml:mrow></mml:math>	/mml:mi> <	/mml:mrow><

mathvariant="normal">Mn</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi. Physical

#	Article	IF	CITATIONS
127	Digital in-line soft x-ray holography with element contrast. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 416.	0.8	30
128	Bilder aus der Tiefe: digitale Inâ€lineâ€Holographie. Nachrichten Aus Der Chemie, 2008, 56, 55-58.	0.0	0
129	Digital In-Line Holography as a Three-Dimensional Tool to Study Motile Marine Organisms During Their Exploration of Surfaces. Journal of Adhesion, 2007, 83, 417-430.	1.8	65
130	Settlement and adhesion of algal cells to hexa(ethylene glycol)-containing self-assembled monolayers with systematically changed wetting properties. Biointerphases, 2007, 2, 143-150.	0.6	149
131	Vacuum-ultraviolet Gabor holography with synchrotron radiation. Ultramicroscopy, 2007, 107, 1171-1177.	0.8	20
132	Surface characterization of colossal magnetoresistive manganites La1â^'xSrxMnO3 using photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2006, 153, 37-57.	0.8	12
133	Temperature-dependent x-ray absorption spectroscopy of colossal magnetoresistive perovskites. Physical Review B, 2005, 71, .	1.1	41
134	Direct Observation of High-Temperature Polaronic Behavior in Colossal Magnetoresistive Manganites. Physical Review Letters, 2004, 92, 166401.	2.9	75
135	Correction of non-linearity effects in detectors for electron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2004, 141, 45-59.	0.8	28
136	Formation of STM images ofNi3Al(001) and (111) surfaces. Physical Review B, 2003, 68, .	1.1	18
137	Tetragonal silver films on V(100):â€,Experimental andab initiostudies. Physical Review B, 2003, 68, .	1.1	12
138	Al2O3-films on Ni3Al(111): a template for nanostructured cluster growth. New Journal of Physics, 2002, 4, 75-75.	1.2	78
139	Preferential cluster nucleation on long-range superstructures on Al2O3/Ni3Al(111). Surface Science, 2001, 486, L443-L448.	0.8	37
140	Growth of copper and vanadium on a thin Al2O3-film on Ni3Al(111). Thin Solid Films, 2001, 400, 71-75.	0.8	32
141	Oxidation of Ni3Al(111) at 600, 800, and 1050 K investigated by scanning tunneling microscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 1923-1927.	0.9	57
142	STM measurements on alloy formation during submonolayer growth of Mn on Cu(111). Applied Surface Science, 1999, 142, 68-74.	3.1	27
143	The formation of Al2O3-layers on Ni3Al(111). Applied Surface Science, 1999, 142, 169-173.	3.1	54
144	Interaction of oxygen with Ni3Al(111) at 300 K and 1000 K. Surface Science, 1999, 433-435, 705-710.	0.8	50