John J Perry Iv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2104478/publications.pdf

Version: 2024-02-01

230014 388640 4,386 35 27 36 h-index citations g-index papers 37 37 37 5388 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Metal–Organic Material Polymer Coatings for Enhanced Gas Sorption Performance and Hydrolytic Stability under Humid Conditions. ACS Applied Materials & Interfaces, 2020, 12, 33759-33764.	4.0	22
2	Highly selective CO ₂ removal for one-step liquefied natural gas processing by physisorbents. Chemical Communications, 2019, 55, 3219-3222.	2.2	31
3	Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie - International Edition, 2018, 57, 5684-5689.	7.2	161
4	Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie, 2018, 130, 5786-5791.	1.6	27
5	Highly Selective Separation of C ₂ H ₂ from CO ₂ by a New Dichromate-Based Hybrid Ultramicroporous Material. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33395-33400.	4.0	116
6	Hybrid ultramicroporous materials (HUMs) with enhanced stability and trace carbon capture performance. Chemical Communications, 2017, 53, 5946-5949.	2.2	99
7	Flue-gas and direct-air capture of CO ₂ by porous metal–organic materials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160025.	1.6	80
8	Enhanced Stability toward Humidity in a Family of Hybrid Ultramicroporous Materials Incorporating Cr ₂ O ₇ ^{2–} Pillars. Crystal Growth and Design, 2017, 17, 1933-1937.	1.4	12
9	The effect of centred versus offset interpenetration on C ₂ H ₂ sorption in hybrid ultramicroporous materials. Chemical Communications, 2017, 53, 11592-11595.	2.2	40
10	Controlling the Uptake and Regulating the Release of Nitric Oxide in Microporous Solids. ACS Applied Materials & Samp; Interfaces, 2017, 9, 43520-43528.	4.0	15
11	Crystal engineering of a family of hybrid ultramicroporous materials based upon interpenetration and dichromate linkers. Chemical Science, 2016, 7, 5470-5476.	3.7	66
12	Tuning Pore Size in Squareâ€Lattice Coordination Networks for Sizeâ€Selective Sieving of CO ₂ . Angewandte Chemie, 2016, 128, 10424-10428.	1.6	43
13	Tuning Pore Size in Squareâ€Lattice Coordination Networks for Sizeâ€Selective Sieving of CO ₂ . Angewandte Chemie - International Edition, 2016, 55, 10268-10272.	7.2	237
14	Network diversity through two-step crystal engineering of a decorated 6-connected primary molecular building block. CrystEngComm, 2016, 18, 8578-8581.	1.3	14
15	Theoretical Optimization of Pore Size and Chemistry in SIFSIX-3-M Hybrid Ultramicroporous Materials. Crystal Growth and Design, 2016, 16, 3890-3897.	1.4	37
16	A rare cationic building block that generates a new type of polyhedral network with "cross-linked― pto topology. Chemical Communications, 2016, 52, 4160-4162.	2.2	18
17	Direct Air Capture of CO ₂ by Physisorbent Materials. Angewandte Chemie - International Edition, 2015, 54, 14372-14377.	7.2	382
18	Zero-periodic metal–organic material, organic polymer composites: tuning properties of methacrylate polymers via dispersion of dodecyloxy-decorated Cu-BDC nanoballs. Journal of Materials Chemistry A, 2015, 3, 13215-13225.	5.2	7

#	Article	IF	CITATIONS
19	Double-walled pyr topology networks from a novel fluoride-bridged heptanuclear metal cluster. Chemical Science, 2015, 6, 4784-4789.	3.7	38
20	DFT-based force field development for noble gas adsorption in metal organic frameworks. Journal of Materials Chemistry A, 2015, 3, 23539-23548.	5.2	33
21	Novel mode of 2-fold interpenetration observed in a primitive cubic network of formula [Ni(1,2-bis(4-pyridyl)acetylene) ₂ (Cr ₂ O ₇)] _n . Chemical Communications, 2015, 51, 14832-14835.	2.2	47
22	Noble Gas Adsorption in Metal–Organic Frameworks Containing Open Metal Sites. Journal of Physical Chemistry C, 2014, 118, 11685-11698.	1.5	165
23	Screening metal–organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology. Physical Chemistry Chemical Physics, 2013, 15, 9093.	1.3	92
24	Connecting structure with function in metal–organic frameworks to design novel photo- and radioluminescent materials. Journal of Materials Chemistry, 2012, 22, 10235.	6.7	105
25	Effects of Polarizability on the Adsorption of Noble Gases at Low Pressures in Monohalogenated Isoreticular Metal–Organic Frameworks. Journal of Physical Chemistry C, 2012, 116, 19765-19772.	1.5	99
26	Solid State Structural Characterization and Solution Spectroscopy of a Dodecyloxy Copper Nanoball. Crystal Growth and Design, 2011, 11, 3183-3189.	1.4	18
27	Complete Series of Monohalogenated Isoreticular Metal–Organic Frameworks: Synthesis and the Importance of Activation Method. Crystal Growth and Design, 2011, 11, 4309-4312.	1.4	53
28	Study of Polymeric Interactions of Copolymers: 2-Hydroxyethyl Methacrylate (HEMA) and 2,3-Dihydroxypropyl Methacrylate (DHPMA) with Copper Hydroxylated Nanoballs. Journal of Nanoscience and Nanotechnology, 2010, 10, 5557-5569.	0.9	2
29	Assessing the Purity of Metalâ^'Organic Frameworks Using Photoluminescence: MOF-5, ZnO Quantum Dots, and Framework Decomposition. Journal of the American Chemical Society, 2010, 132, 15487-15489.	6.6	140
30	Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chemical Society Reviews, 2009, 38, 1400.	18.7	1,630
31	Exciplex Fluorescence as a Diagnostic Probe of Structure in Coordination Polymers of Zn2+and 4,4â€⁻-Bipyridine Containing Intercalated Pyrene and Enclathrated Aromatic Solvent Guests. Journal of the American Chemical Society, 2007, 129, 9094-9101.	6.6	156
32	Bottom up Synthesis That Does Not Start at the Bottom:  Quadruple Covalent Cross-Linking of Nanoscale Faceted Polyhedra. Journal of the American Chemical Society, 2007, 129, 10076-10077.	6.6	203
33	Spectroscopic Characterization of Hydroxylated Nanoballs in Methanol. Inorganic Chemistry, 2007, 46, 5904-5910.	1.9	30
34	4-Methoxypyridine-(pyridine-2,6-dicarboxylato-N,O,O?) copper(II). Journal of Chemical Crystallography, 2004, 34, 877-881.	0.5	12
35	Sextuplet phenyl embrace in a metal–organic Kagomé lattice. Chemical Communications, 2004, , 2534-2535.	2.2	107