Michal Å vantner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2103606/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analyzing probability of detection as a function of defect size and depth in pulsed IR thermography. NDT and E International, 2022, 130, 102673.	3.7	12
2	Application of flash-pulse thermography methods for quantitative thickness inspection of coatings made by different thermal spraying technologies. Surface and Coatings Technology, 2021, 406, 126748.	4.8	10
3	Characterizing Depth of Defects with Low Size/Depth Aspect Ratio and Low Thermal Reflection by Using Pulsed IR Thermography. Materials, 2021, 14, 1886.	2.9	9
4	Study on Human Temperature Measurement by Infrared Thermography. Engineering Proceedings, 2021, 8, 4.	0.4	3
5	Laser Scanning Thermography for Coating Thickness Inspection. Engineering Proceedings, 2021, 8, 17.	0.4	1
6	Repeatability Study of Flash-Pulse Thermographic Inspection of CFRP Samples. Engineering Proceedings, 2021, 8, 1.	0.4	0
7	Active IR Thermography Evaluation of Coating Thickness by Determining Apparent Thermal Effusivity. Materials, 2020, 13, 4057.	2.9	18
8	Continuous walking-beam furnace 3D zonal model and direct thermal-box barrier based temperature measurement. Case Studies in Thermal Engineering, 2020, 18, 100608.	5.7	10
9	Experimental investigation of a time-power transformation method for flash-pulse thermographic testing. Applied Optics, 2020, 59, E89.	1.8	2
10	Quantitative inspection of coating thickness by flash-pulse thermography and time-power transformation evaluation. Applied Optics, 2020, 59, E29.	1.8	10
11	Quantitative Inspection of Coatings Thickness by Time-Power Transformation Flash Pulse Thermographic Method. Proceedings (mdpi), 2019, 27, 32.	0.2	4
12	Thermographic method for fatigue limit determination at cyclic loading - measurement procedure overview and validation. , 2019, , .		0
13	Lock-in and pulsed thermography for solar cell testing. Applied Optics, 2018, 57, D90.	1.8	1
14	Quantitative evaluation of active thermography using contrast-to-noise ratio. Applied Optics, 2018, 57, D49.	1.8	18
15	A novel large-area embroidered temperature sensor based on an innovative hybrid resistive thread. Sensors and Actuators A: Physical, 2017, 265, 111-119.	4.1	20
16	The Stamp method for processing of high noise data from infrared sensor in harsh environment. Sensors and Actuators A: Physical, 2017, 263, 480-487.	4.1	0
17	Thermal effects of laser marking on microstructure and corrosion properties of stainless steel. Applied Optics, 2016, 55, D35.	2.1	22
18	Theory and verification of a method for parameter-free laser-flash diffusivity measurement of a single-side object. International Journal of Heat and Mass Transfer, 2016, 102, 574-584.	4.8	12

Michal Åvantner

#	Article	IF	CITATIONS
19	The comparison of heat transfer through the smart textile firefighter suit. , 2016, , .		1
20	The influence of furnace wall emissivity on steel charge heating. Infrared Physics and Technology, 2016, 74, 63-71.	2.9	21
21	Active thermography inspection of protective glass contamination on laser scanning heads. Applied Optics, 2016, 55, D60.	2.1	7
22	Non-contact charge temperature measurement on industrial continuous furnaces and steel charge emissivity analysis. Infrared Physics and Technology, 2013, 61, 20-26.	2.9	24
23	IR thermography heat flux measurement in fire safety applications. Infrared Physics and Technology, 2012, 55, 292-298.	2.9	13
24	Frictionally Excited Thermoelastic Instability and the Suppression of Its Exponential Rise in Disc Brakes. Journal of Thermal Stresses, 2010, 33, 427-440.	2.0	8
25	Thermal box-barrier for a direct measurement in high temperature environment. Applied Thermal Engineering, 2007, 27, 560-567.	6.0	5
26	Influence of Radiation Losses on Thermal Conductivity Determination at Low Temperatures. International Journal of Thermophysics, 2006, 27, 1241-1249.	2.1	9
27	Simulation of Strain Gauge Thermal Effects During Residual Stress Hole Drilling Measurements. Journal of Strain Analysis for Engineering Design, 2005, 40, 611-619.	1.8	6
28	Exodus stochastic method application in the continuous reheating furnace control system. Scandinavian Journal of Metallurgy, 2004, 33, 328-337.	0.3	8
29	Thermography analyses of the hole-drilling residual stress measuring technique. Infrared Physics and Technology, 2004, 45, 131-142.	2.9	24
30	Temperature and heat transfer measurement in continuous reheating furnaces. Scandinavian Journal of Metallurgy, 2003, 32, 225-232.	0.3	10
31	Uncertainties of the Evaluation of the Hole Drilling Residual Stress Measurement According to the ASTM E837 Standard. Applied Mechanics and Materials, 0, 732, 24-27.	0.2	3