Vincenzo Corrado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2103533/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project. Energy Policy, 2014, 68, 273-284.	4.2	358
2	A model to design and optimize multi-energy systems in buildings at the design concept stage. Renewable Energy, 2010, 35, 644-655.	4.3	141
3	USE of the ANOVA approach for sensitive building energy design. Applied Energy, 2010, 87, 3073-3083.	5.1	115
4	Energy refurbishment of the Italian residential building stock: energy and cost analysis through the application of the building typology. Energy Policy, 2017, 105, 148-160.	4.2	94
5	Uncertainty and Sensitivity Analysis for Building Energy Rating. Journal of Building Physics, 2009, 33, 125-156.	1.2	87
6	A building thermal bridges sensitivity analysis. Applied Energy, 2013, 107, 229-243.	5.1	84
7	Data analytics for occupancy pattern learning to reduce the energy consumption of HVAC systems in office buildings. Sustainable Cities and Society, 2017, 35, 191-208.	5.1	84
8	Energy and environmental payback times for an NZEB retrofit. Building and Environment, 2019, 147, 461-472.	3.0	84
9	Application of energy rating methods to the existing building stock: Analysis of some residential buildings in Turin. Energy and Buildings, 2009, 41, 790-800.	3.1	75
10	A method for heating consumption assessment in existing buildings: A field survey concerning 120 Italian schools. Energy and Buildings, 2008, 40, 801-809.	3.1	67
11	Refurbishment trends of the residential building stock: Analysis of a regional pilot case in Italy. Energy and Buildings, 2016, 132, 91-106.	3.1	63
12	Assessment of building cooling energy need through a quasi-steady state model: Simplified correlation for gain-loss mismatch. Energy and Buildings, 2007, 39, 569-579.	3.1	54
13	Analysis of the building energy balance to investigate the effect of thermal insulation in summer conditions. Energy and Buildings, 2012, 52, 168-180.	3.1	53
14	Transformation of an Office Building into a Nearly Zero Energy Building (nZEB): Implications for Thermal and Visual Comfort and Energy Performance. Energies, 2019, 12, 895.	1.6	46
15	Assessment of Cost-optimal Energy Performance Requirements for the Italian Residential Building Stock. Energy Procedia, 2014, 45, 443-452.	1.8	45
16	Impact of daylighting on total energy use in offices of varying architectural features in Italy: Results from a parametric study. Building and Environment, 2017, 113, 151-162.	3.0	45
17	Comparison between measured and calculated parameters for the acoustical characterization of small classrooms. Applied Acoustics, 2008, 69, 966-976.	1.7	38
18	Analysing the future energy performance of residential buildings in the most populated Italian climatic zone: A study of climate change impacts. Energy Reports, 2021, 7, 8548-8560.	2.5	38

VINCENZO CORRADO

#	Article	IF	CITATIONS
19	A Comparative Analysis of Different Future Weather Data for Building Energy Performance Simulation. Climate, 2021, 9, 37.	1.2	35
20	Calculation procedure of the shading factor under complex boundary conditions. Solar Energy, 2011, 85, 2524-2539.	2.9	34
21	Data structuring for the ontological modelling of urban energy systems: The experience of the SEMANCO project. Sustainable Cities and Society, 2015, 14, 223-235.	5.1	34
22	A new procedure of energy audit and cost analysis for the transformation of a school into a nearly zero-energy building. Energy Procedia, 2017, 140, 325-338.	1.8	32
23	Renovation of a social house into a NZEB: Use of renewable energy sources and economic implications. Renewable Energy, 2020, 159, 356-370.	4.3	29
24	A New Methodology for Assessing the Energy Consumption of Building Stocks. Energies, 2017, 10, 1102.	1.6	21
25	Implementing Cost-optimal Methodology in Existing Public Buildings. Energy Procedia, 2015, 78, 2022-2027.	1.8	20
26	A Methodology to Investigate the Deviations between Simple and Detailed Dynamic Methods for the Building Energy Performance Assessment. Energies, 2020, 13, 6217.	1.6	18
27	The new Italian Climatic Data and their Effect in the Calculation of the Energy Performance of Buildings. Energy Procedia, 2016, 101, 153-160.	1.8	17
28	Verification of the New Ministerial Decree about Minimum Requirements for the Energy Performance of Buildings. Energy Procedia, 2016, 101, 200-207.	1.8	17
29	New equivalent parameters for thermal characterization of opaque building envelope components under dynamic conditions. Applied Energy, 2016, 163, 313-322.	5.1	16
30	New Challenge of the Public Buildings: nZEB Findings from IEE RePublic_ZEB Project. Energy Procedia, 2015, 78, 2016-2021.	1.8	15
31	On the Refurbishment of the Public Building Stock Toward the Nearly Zero-energy Target: Two Italian case studies. Energy Procedia, 2016, 101, 105-112.	1.8	14
32	The significant imbalance of nZEB energy need for heating and cooling in Italian climatic zones. Energy Procedia, 2017, 126, 258-265.	1.8	14
33	The effect of glazing on nZEB performance. Energy Procedia, 2018, 148, 320-327.	1.8	11
34	On the limits of the quasi-steady-state method to predict the energy performance of low-energy buildings. Thermal Science, 2018, 22, 1117-1127.	0.5	11
35	Cost-optimal approach to transform the public buildings into nZEBs: an European cross-country comparison. Energy Procedia, 2017, 140, 314-324.	1.8	10
36	Refurbishment of the Residential Building Stock toward the Nearly-Zero Energy Target Through the Application of the Building Typology. Energy Procedia, 2016, 101, 208-215.	1.8	8

VINCENZO CORRADO

#	Article	IF	CITATIONS
37	Tracking the Energy Refurbishment Processes in Residential Building Stocks. The Pilot Case of Piedmont Region. Energy Procedia, 2015, 78, 1051-1056.	1.8	7
38	Steady-State and Dynamic Codes, Critical Review, Advantages and Disadvantages, Accuracy, and Reliability. , 2019, , 263-294.		6
39	Accuracy of Simplified Modelling Assumptions on External and Internal Driving Forces in the Building Energy Performance Simulation. Energies, 2021, 14, 6841.	1.6	6
40	Improvements of simplified hourly models for the energy assessment of buildings: The application of EN ISO 52016 in Italy. Energy Reports, 2022, 8, 7349-7359.	2.5	6
41	The Overall Architecture of a Decision Support System for Public Buildings. Energy Procedia, 2015, 78, 2196-2201.	1.8	5
42	Improved procedure for the construction of a Typical Meteorological Year for assessing the energy need of a residential building. Journal of Building Performance Simulation, 2020, 13, 139-151.	1.0	5
43	Influence of the Meteorological Record Length on the Generation of Representative Weather Files. Energies, 2020, 13, 2103.	1.6	5
44	On the improvement of indoor environmental quality, energy performance and costs for a commercial nearly zero-energy building. Science and Technology for the Built Environment, 2021, 27, 1056-1074.	0.8	5
45	Energy efficiency in buildings research perspectives and trends. Thermal Science, 2018, 22, 971-976.	0.5	5
46	The Dynamic Model of EN ISO 52016-1 for the Energy Assessment of Buildings Compared to Simplified and Detailed Simulation Methods. , 0, , .		5
47	Editorial to the Proceedings of the 6th International Building Physics Conference (IBPC 2015). Energy Procedia, 2015, 78, 1.	1.8	4
48	Integration of Thermal and Visual Comfort in the Retrofit of Existing Buildings. , 2018, , .		4
49	Sensitivity Analysis of the Thermal Energy Need of a Residential Building Assessed by means of the EN ISO 52016 Simplified Dynamic Method. E3S Web of Conferences, 2020, 197, 02012.	0.2	4
50	Measuring the Hygroscopic Properties of Porous Media in Transient Regime. From the Material Level to the Whole Building HAM Simulation of a Coated Room. Energy Procedia, 2015, 78, 1501-1506.	1.8	3
51	The Influence of Coatings on the Environmental Hygric Inertia of Plastered Rooms. Energy Procedia, 2015, 78, 1507-1512.	1.8	3
52	Influence of Comfort Expectations on Building Energy Need. Energy Procedia, 2017, 140, 265-276.	1.8	3
53	Application of the Comparative Methodology for the Definition of Individual Building Elements Energy Requirements in Italy. Energy Procedia, 2015, 78, 3025-3030.	1.8	2
54	Practical Applications of Uncertainty and Sensitivity Techniques in Building Energy Simulation. Procedia, Social and Behavioral Sciences, 2010, 2, 7708-7709.	0.5	1

VINCENZO CORRADO

#	Article	IF	CITATIONS
55	Building Energy Simulation for Nearly Zero Energy Retrofit Design: The Model Calibration. , 2018, , .		1
56	Building simulation. Science and Technology for the Built Environment, 2018, 24, 459-460.	0.8	1
57	Hygrothermal modelling of building enclosures: reference year design for moisture accumulation and condensation risk assessment. , 2018, , .		1
58	Optimized Solutions For Thermal And Visual Comfort In The Design Of A Nearly Zero-Energy Building. , 0, , .		1
59	The application of the EN ISO 52016 standard and its Italian National Annex to assess the heating and cooling needs of a reference office building. E3S Web of Conferences, 2021, 312, 06003.	0.2	1
60	Validation of the simplified heat conduction model of EN ISO 52016-1. Journal of Physics: Conference Series, 2021, 2069, 012136.	0.3	1
61	Social Housing In Italy: Energy Audit And Dynamic Simulation Towards A nZEB Policy. , 0, , .		1
62	Passive solar buildings and bioclimatic architecture in Italy. International Journal of Ambient Energy, 1990, 11, 31-38.	1.4	0
63	Building Stock Energy Models and ICT Solutions for Urban Energy Systems. Advances in Civil and Industrial Engineering Book Series, 2021, , 490-514.	0.2	Ο
64	Analysis of Comfort Level in Italian Bioclimatic Buildings. , 1990, , 95-98.		0
65	New Criteria for Defining Comfort in Buildings. , 1990, , 220-223.		0
66	Dynamic Simulation of existing buildings: considerations on the Model Calibration , 0, , .		0
67	Dynamic Simulation to identify Cost-Optimal Energy Requirements for the Italian Building Stock. , 0, , .		0
68	Generation Of Moisture Reference Years For Interstitial Condensation Risk Assessment: Influence Of The Meteorological Record Length. , 0, , .		0