
Noel W Duffy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2103196/publications.pdf Version: 2024-02-01

NOFI W DUFFY

#	Article	IF	CITATIONS
1	Can Laminated Carbon Challenge Gold? Toward Universal, Scalable, and Lowâ€Cost Carbon Electrodes for Perovskite Solar Cells. Advanced Materials Technologies, 2022, 7, 2101148.	3.0	14
2	Inorganic Electron Transport Materials in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2008300.	7.8	105
3	Electron Transport Materials: Inorganic Electron Transport Materials in Perovskite Solar Cells (Adv.) Tj ETQq1 1	0.784314 ı 7.8	∙gBŢ /Overla⊂
4	Dual Photolytic Pathways in an Alloyed Plasmonic Near-Perfect Absorber: Implications for Photoelectrocatalysis. ACS Applied Nano Materials, 2021, 4, 2702-2712.	2.4	5
5	Tunable transition metal complexes as hole transport materials for stable perovskite solar cells. Chemical Communications, 2021, 57, 2093-2096.	2.2	4
6	Strategically Constructed Bilayer Tin (IV) Oxide as Electron Transport Layer Boosts Performance and Reduces Hysteresis in Perovskite Solar Cells. Small, 2020, 16, e1901466.	5.2	32
7	An extensible and tunable full-opaque cascade smart electrochromic device. Solar Energy Materials and Solar Cells, 2020, 218, 110740.	3.0	10
8	The Performanceâ€Determining Role of Lewis Bases in Dyeâ€Sensitized Solar Cells Employing Copperâ€Bisphenanthroline Redox Mediators. Advanced Energy Materials, 2020, 10, 2002067.	10.2	22
9	Passivation by pyridine-induced PbI ₂ in methylammonium lead iodide perovskites. RSC Advances, 2020, 10, 23829-23833.	1.7	8
10	Light intensity modulated photoluminescence for rapid series resistance mapping of perovskite solar cells. Nano Energy, 2020, 73, 104755.	8.2	6
11	Bulk recrystallization for efficient mixed-cation mixed-halide perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 25511-25520.	5.2	27
12	Perovskite solar cells with a hybrid electrode structure. AIP Advances, 2019, 9, 125037.	0.6	16
13	Visualisierung der Phasensegregation in Gemischthalogenid―Perowskiteinkristallen. Angewandte Chemie, 2019, 131, 2919-2924.	1.6	4
14	Visualizing Phase Segregation in Mixedâ€Halide Perovskite Single Crystals. Angewandte Chemie - International Edition, 2019, 58, 2893-2898.	7.2	77
15	Tunable Crystallization and Nucleation of Planar CH ₃ NH ₃ PbI ₃ through Solvent-Modified Interdiffusion. ACS Applied Materials & Interfaces, 2018, 10, 14673-14683.	4.0	14
16	Fully printable perovskite solar cells with highly-conductive, low-temperature, perovskite-compatible carbon electrode. Carbon, 2018, 129, 830-836.	5.4	79
17	Neural Electrodes Based on 3D Organic Electroactive Microfibers. Advanced Functional Materials, 2018, 28, 1700927.	7.8	15
18	Controlled Growth of Monocrystalline Organo‣ead Halide Perovskite and Its Application in Photonic Devices. Angewandte Chemie - International Edition, 2017, 56, 12486-12491.	7.2	54

#	Article	IF	CITATIONS
19	Controlled Growth of Monocrystalline Organoâ€Lead Halide Perovskite and Its Application in Photonic Devices. Angewandte Chemie, 2017, 129, 12660-12665.	1.6	10
20	How reliable are efficiency measurements of perovskite solar cells? The first inter-comparison, between two accredited and eight non-accredited laboratories. Journal of Materials Chemistry A, 2017, 5, 22542-22558.	5.2	70
21	Dipole-field-assisted charge extraction in metal-perovskite-metal back-contact solar cells. Nature Communications, 2017, 8, 613.	5.8	66
22	Polypyridyl Iron Complex as a Hole-Transporting Material for Formamidinium Lead Bromide Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1855-1859.	8.8	17
23	Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH ₃ NH ₃ Pbl ₃ Morphology. Advanced Functional Materials, 2016, 26, 1278-1285.	7.8	90
24	Cobalt Polypyridyl Complexes as Transparent Solutionâ€Processable Solid‣tate Charge Transport Materials. Advanced Energy Materials, 2016, 6, 1600874.	10.2	25
25	Planar versus mesoscopic perovskite microstructures: The influence of CH3NH3PbI3 morphology on charge transport and recombination dynamics. Nano Energy, 2016, 22, 439-452.	8.2	76
26	Insights into Planar CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells Using Impedance Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 4444-4453.	1.5	160
27	Plasmonic Ge-doped ZnO nanocrystals. Chemical Communications, 2015, 51, 12369-12372.	2.2	28
28	Efficient All-Printable Solid-State Dye-Sensitized Solar Cell Based on a Low-Resistivity Carbon Composite Counter Electrode and Highly Doped Hole Transport Material. Journal of Physical Chemistry C, 2015, 119, 11410-11418.	1.5	14
29	Dominating Energy Losses in NiO pâ€Type Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1401387.	10.2	75
30	Influence of moisture out-gassing from encapsulant materials on the lifetime of organic solar cells. Solar Energy Materials and Solar Cells, 2015, 132, 485-491.	3.0	44
31	Mimicry of Sputtered <i>i-</i> ZnO Thin Films Using Chemical Bath Deposition for Solution-Processed Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 22519-22526.	4.0	23
32	Cu ₂ ZnSnS _{4<i>x</i>} Se _{4(1–<i>x</i>)} Solar Cells from Polar Nanocrystal Inks. Journal of the American Chemical Society, 2014, 136, 5237-5240.	6.6	102
33	Charge Transport and Recombination in Dye-Sensitized Solar Cells on Plastic Substrates. Journal of Physical Chemistry C, 2014, 118, 15154-15161.	1.5	7
34	Charge Transport in Photoanodes Constructed with Mesoporous TiO ₂ Beads for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16635-16642.	1.5	8
35	Cu2ZnGeS4 Nanocrystals from Air-Stable Precursors for Sintered Thin Film Alloys. Chemistry of Materials, 2014, 26, 5482-5491.	3.2	42
36	Solution-processed CdS thin films from a single-source precursor. Journal of Materials Chemistry C, 2014, 2, 3247-3253.	2.7	16

#	Article	IF	CITATIONS
37	Near-Infrared Absorbing Cu ₁₂ Sb ₄ S ₁₃ and Cu ₃ SbS ₄ Nanocrystals: Synthesis, Characterization, and Photoelectrochemistry. Journal of the American Chemical Society, 2013, 135, 11562-11571.	6.6	155
38	Surface State Recombination and Passivation in Nanocrystalline TiO2 Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 25118-25126.	1.5	46
39	Conducting polymer and titanium carbide-based nanocomposites as efficient counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 2013, 105, 275-281.	2.6	34
40	Non-injection synthesis of Cu ₂ ZnSnS ₄ nanocrystals using a binary precursor and ligand approach. RSC Advances, 2013, 3, 1017-1020.	1.7	38
41	Highly Efficient pâ€Type Dyeâ€Sensitized Solar Cells based on Tris(1,2â€diaminoethane)Cobalt(II)/(III) Electrolytes. Angewandte Chemie - International Edition, 2013, 52, 602-605.	7.2	177
42	Cyanomethylbenzoic Acid: An Acceptor for Donor–π–Acceptor Chromophores Used in Dye‧ensitized Solar Cells. ChemSusChem, 2013, 6, 256-260.	3.6	47
43	In Situ Formation of Reactive Sulfide Precursors in the One-Pot, Multigram Synthesis of Cu ₂ ZnSnS ₄ Nanocrystals. Crystal Growth and Design, 2013, 13, 1712-1720.	1.4	57
44	Stable Dyeâ€ S ensitized Solar Cell Electrolytes Based on Cobalt(II)/(III) Complexes of a Hexadentate Pyridyl Ligand. Angewandte Chemie - International Edition, 2013, 52, 5527-5531.	7.2	87
45	Intraphase Microstructure–Understanding the Impact on Organic Solar Cell Performance. Advanced Functional Materials, 2013, 23, 5655-5662.	7.8	10
46	Solution processing of next-generation nanocrystal solar cells. , 2013, , .		0
47	Attributes of Direct Current Aperiodic and Alternating Current Harmonic Components Derived From Large Amplitude Fourier Transformed Voltammetry Under Microfluidic Control in a Channel Electrode. Analytical Chemistry, 2012, 84, 6686-6692.	3.2	10
48	Dye regeneration and charge recombination in dye-sensitized solar cells with ferrocene derivatives as redox mediators. Energy and Environmental Science, 2012, 5, 7090.	15.6	156
49	A New Direction in Dye-Sensitized Solar Cells Redox Mediator Development: In Situ Fine-Tuning of the Cobalt(II)/(III) Redox Potential through Lewis Base Interactions. Journal of the American Chemical Society, 2012, 134, 16646-16653.	6.6	134
50	Aqueous Dye‧ensitized Solar Cell Electrolytes Based on the Ferricyanide–Ferrocyanide Redox Couple. Advanced Materials, 2012, 24, 1222-1225.	11.1	110
51	Electrochemical Impedance Spectroscopy—A Simple Method for the Characterization of Polymer Inclusion Membranes Containing Aliquat 336. Membranes, 2011, 1, 132-148.	1.4	34
52	High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nature Chemistry, 2011, 3, 211-215.	6.6	553
53	Comparison of the electrochemical behaviour of buckypaper and polymer-intercalated buckypaper electrodes. Journal of Electroanalytical Chemistry, 2011, 652, 52-59.	1.9	12
54	Cement and concrete flow analysis in a rapidly expanding economy: Ireland as a case study. Resources, Conservation and Recycling, 2011, 55, 448-455.	5.3	30

#	Article	IF	CITATIONS
55	On the Role of the Spacer Layer in Monolithic Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 2365-2369.	1.5	28
56	Effect on Cell Efficiency following Thermal Degradation of Dye-Sensitized Mesoporous Electrodes Using N719 and D5 Sensitizers. Journal of Physical Chemistry C, 2009, 113, 18902-18906.	1.5	20
57	Characterization of Nonlinear Background Components in Voltammetry by Use of Large Amplitude Periodic Perturbations and Fourier Transform Analysis. Analytical Chemistry, 2009, 81, 8801-8808.	3.2	40
58	The nickel–carbon asymmetric supercapacitor—Performance, energy density and electrode mass ratios. Electrochimica Acta, 2008, 54, 535-539.	2.6	74
59	Photophysical, dynamic and redox behavior of tris(2,6-diisopropylphenyl)phosphine. New Journal of Chemistry, 2008, 32, 214-231.	1.4	47
60	Detection of Oxygen Evolution from Nickel Hydroxide Electrodes Using Scanning Electrochemical Microscopy. Journal of the Electrochemical Society, 2008, 155, A262.	1.3	28
61	Evaluation of the effects of oxygen evolution on the capacity and cycle life of nickel hydroxide electrode materials. Journal of Power Sources, 2007, 168, 513-521.	4.0	49
62	Cyclic Voltammetry of Th(IV) in the Room-Temperature Ionic Liquid [Me3NnBu][N(SO2CF3)2]. Inorganic Chemistry, 2006, 45, 1677-1682.	1.9	34
63	Macroelectrode voltammetry in toluene using a phosphonium–phosphate ionic liquid as the supporting electrolyte. Electrochemistry Communications, 2006, 8, 892-898.	2.3	44
64	Increasing Cycle Life of Nickel Hydroxide Electrodes at High Currents. ECS Transactions, 2006, 2, 105-116.	0.3	4
65	Fourier Transformed Large Amplitude Square-Wave Voltammetry as an Alternative to Impedance Spectroscopy: Evaluation of Resistance, Capacitance and Electrode Kinetic Effects via an Heuristic Approach. Electroanalysis, 2005, 17, 1450-1462.	1.5	24
66	Changing the Look of Voltammetry. Analytical Chemistry, 2005, 77, 186 A-195 A.	3.2	184
67	Resistance, Capacitance, and Electrode Kinetic Effects in Fourier-Transformed Large-Amplitude Sinusoidal Voltammetry:  Emergence of Powerful and Intuitively Obvious Tools for Recognition of Patterns of Behavior. Analytical Chemistry, 2004, 76, 6214-6228.	3.2	73
68	Microwave Reflectance Studies of Photoelectrochemical Kinetics at Semiconductor Electrodes. 1. Steady-State, Transient, and Periodic Responses. Journal of Physical Chemistry B, 2003, 107, 5857-5863.	1.2	22
69	Microwave Reflectance Studies of Photoelectrochemical Kinetics at Semiconductor Electrodes. 2. Hydrogen Evolution at p-Si in Ammonium Fluoride Solution. Journal of Physical Chemistry B, 2003, 107, 5864-5870.	1.2	14
70	Frequency Response Analysis of the Potential Modulated Microwave Reflectivity Response of p-Type Silicon During Anodic Dissolution in Ammonium Fluoride Solutions. Zeitschrift Fur Physikalische Chemie, 2003, 217, 333-350.	1.4	1
71	Electrodeposition and characterisation of CdTe films for solar cell applications. Electrochimica Acta, 2000, 45, 3355-3365.	2.6	48
72	Characterisation of electron transport and back reaction in dye-sensitised nanocrystalline solar cells by small amplitude laser pulse excitation. Electrochemistry Communications, 2000, 2, 262-266.	2.3	62

#	Article	IF	CITATIONS
73	A novel charge extraction method for the study of electron transport and interfacial transfer in dye sensitised nanocrystalline solar cells. Electrochemistry Communications, 2000, 2, 658-662.	2.3	296
74	Investigation of the Kinetics of the Back Reaction of Electrons with Tri-Iodide in Dye-Sensitized Nanocrystalline Photovoltaic Cells. Journal of Physical Chemistry B, 2000, 104, 8916-8919.	1.2	157
75	Communication between Co2(CO)4dppm Units via Polyferrocenylalkyne Linkages. Organometallics, 2000, 19, 5039-5048.	1.1	35
76	Monitoring ECE transformations of metal carbonyls by in situ spectroelectrochemistry; SNIFTIRS of [Co3(CO)9C]2. Journal of Organometallic Chemistry, 1999, 582, 183-187.	0.8	9
77	Synthesis, structure and electrochemistry of ferrocenylethynylsilanes and their complexes with dicobalt octacarbonyl. Journal of Organometallic Chemistry, 1999, 573, 36-46.	0.8	20
78	Preparation and redox properties of phosphite derivatives of R2C2Co2(CO)6â^'n[P(OMe)3]n (R=CF3,) Tj ETQq0 (0 0 rgBT /0	Overlock 10 T
79	Relationships between basicity, redox behaviour of ferrocenylamines and their reactivity with Pt[II] compounds. Journal of Organometallic Chemistry, 1998, 564, 125-131.	0.8	20
80	Infrared spectroelectrochemistry of [Co3(CPh)(CO)9] in methanol at a platinum electrode. Journal of the Chemical Society Dalton Transactions, 1998, , 2855-2860.	1.1	8
81	An EPR Study of 2,3-Bis(diphenylphosphino)maleic Anhydride (BMA) Complexes and the BMA Radical Anion. Inorganic Chemistry, 1998, 37, 4849-4856.	1.9	26
82	In situ infrared spectroscopic analysis of the adsorption of ruthenium(II) bipyridyl dicarboxylic acid photosensitisers to TiO2 in aqueous solutions. Chemical Physics Letters, 1997, 266, 451-455.	1.2	111
83	Synthesis and redox chemistry of 1,1′-bis(diphenylphosphino)ferrocene derivatives of R2C2Co2(CO)6 (R )	Tj ETQq1	1 0.784314 r 24
84	Synthesis, Structure, and Electronic Communication in Complexes Derived from RC2Co2(CO)6C2Co2(CO)6R. Organometallics, 1996, 15, 3935-3943.	1.1	54
85	Electronic interactions in diyne Co2(CO)6 complexes. Inorganica Chimica Acta, 1996, 247, 99-104.	1.2	38
86	Reactions of HCCo3(CO)9 with silanes; synthesis and electrochemistry of X[SiMe2CCo3(CO)9]2 (X=O,) Tj ETQq	0	Qverlock 10
87	Water-soluble Co3C and Co2C2 clusters; redox chemistry and electrochemical reactions in water. Journal of the Chemical Society Dalton Transactions, 1994, , 2821.	1.1	3
88	Phosphine Complexes of Platinum(II) Cycloplatinated Ferrocenylamines. Inorganic Chemistry, 1994, 33, 5343-5350.	1.9	9
89	Synthesis and stereochemistry of bis(platinum) complexes of ferrocenylamines. Organometallics, 1994, 13, 511-521.	1.1	50

90Chiral C1- and C2-Symmetrical 2,2''-Bis(1-aminoethyl)-1,1''-biferrocenes: Synthesis, Structure, and Redox
Chemistry. Organometallics, 1994, 13, 4895-4904.1.124

#	Article	IF	CITATIONS
91	Synthesis, structure and redox chemistry of ferrocenylsilylmethylidinetricobaltnonacarbonyl complexes, FcSi(R)2CCo3(CO)9, $1,1\hat{a}\in^2$ -Fc $\hat{a}\in^2$ [Si(R)2CCo3(CO)9]2 (R = Me, Et, Ph) and their derivatives. Journal of Organometallic Chemistry, 1992, 437, 323-346.	0.8	13