Yeng Ming Lam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2103181/publications.pdf

Version: 2024-02-01

133 papers 13,406 citations

45 h-index 20961 115 g-index

142 all docs

142 docs citations 142 times ranked 18545 citing authors

#	Article	IF	CITATIONS
1	Novel Materials for Urban Farming. Advanced Materials, 2022, 34, e2105009.	21.0	24
2	Assessment of heavy metal and metalloid levels and screening potential of tropical plant species for phytoremediation in Singapore. Environmental Pollution, 2022, 295, 118681.	7. 5	9
3	Versatile <scp>azaâ€BODIPY</scp> â€based <scp>lowâ€bandgap</scp> conjugated small molecule for light harvesting and <scp>nearâ€infrared</scp> photodetection. InformaÄnÃ-Materiály, 2022, 4, .	17.3	7
4	Pressureâ€Responsive Twoâ€Dimensional Metal–Organic Framework Composite Membranes for CO ₂ Separation. Angewandte Chemie, 2021, 133, 11419-11426.	2.0	14
5	Pressureâ€Responsive Twoâ€Dimensional Metal–Organic Framework Composite Membranes for CO ₂ Separation. Angewandte Chemie - International Edition, 2021, 60, 11318-11325.	13.8	73
6	Innenrücktitelbild: Pressureâ€Responsive Twoâ€Dimensional Metal–Organic Framework Composite Membranes for CO ₂ Separation (Angew. Chem. 20/2021). Angewandte Chemie, 2021, 133, 11635-11635.	2.0	1
7	Molecular Aggregation of Naphthalene Diimide(NDI) Derivatives in Electron Transport Layers of Inverted Perovskite Solar Cells and Their Influence on the Device Performance. Chemistry - an Asian Journal, 2020, 15, 112-121.	3.3	20
8	Facile control of surfactant lamellar phase transition and adsorption behavior. RSC Advances, 2020, 10, 18025-18034.	3.6	5
9	Two Birds with One Stone: FeS ₂ @C Yolk–Shell Composite for High-Performance Sodium-Ion Energy Storage and Electromagnetic Wave Absorption. Nano Letters, 2020, 20, 3769-3777.	9.1	123
10	Supramolecular Assemblies: Supramolecular Protein Assembly Retains Its Structural Integrity at Liquid–Liquid Interface (Adv. Mater. Interfaces 4/2020). Advanced Materials Interfaces, 2020, 7, 2070021.	3.7	1
11	Supramolecular Protein Assembly Retains Its Structural Integrity at Liquid–Liquid Interface. Advanced Materials Interfaces, 2020, 7, 1901674.	3.7	4
12	Resolving Spectral Mismatch Errors for Perovskite Solar Cells in Commercial Class AAA Solar Simulators. Journal of Physical Chemistry Letters, 2020, 11, 3782-3788.	4.6	10
13	Monitoring Electron–Phonon Interactions in Lead Halide Perovskites Using Time-Resolved THz Spectroscopy. ACS Nano, 2019, 13, 8826-8835.	14.6	52
14	A facile method to evaluate the influence of trap densities on perovskite solar cell performance. Journal of Materials Chemistry C, 2019, 7, 5646-5651.	5.5	32
15	Harvesting Triplet Excitons in Lead-Halide Perovskites for Room-Temperature Phosphorescence. Chemistry of Materials, 2019, 31, 2597-2602.	6.7	57
16	Multiscale Self-Assembly of a Phenyl-Flanked Diketopyrrolopyrrole Derivative: A Solution-Processable Building Block for π-Conjugated Supramolecular Polymers. Langmuir, 2019, 35, 5626-5634.	3.5	6
17	Ultrafast Spinâ€toâ€Charge Conversion at the Surface of Topological Insulator Thin Films. Advanced Materials, 2018, 30, e1802356.	21.0	90
18	Molecular engineering of two-dimensional hybrid perovskites with broadband emission for white light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 10301-10307.	5.5	38

#	Article	IF	Citations
19	Elucidating the effect of additives on the alkyl chain packing of a double tail cationic surfactant. Journal of Colloid and Interface Science, 2018, 528, 400-409.	9.4	10
20	Acene-based organic semiconductors for organic light-emitting diodes and perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 9017-9029.	5.5	50
21	Understanding the microstructural evolution of cold sprayed Ti-6Al-4V coatings on Ti-6Al-4V substrates. Applied Surface Science, 2018, 459, 492-504.	6.1	52
22	Efficient Roomâ€√emperature Phosphorescence from Organic–Inorganic Hybrid Perovskites by Molecular Engineering. Advanced Materials, 2018, 30, e1707621.	21.0	126
23	Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder. Physical Review Materials, 2018, 2, .	2.4	89
24	Phonon features in terahertz photoconductivity spectra due to data analysis artifact: A case study on organometallic halide perovskites. Applied Physics Letters, 2017, 110, .	3.3	21
25	Solution-processed perovskite-kesterite reflective tandem solar cells. Solar Energy, 2017, 155, 35-38.	6.1	16
26	Enhanced Efficiency of Dye-Sensitized Solar Cells with Mesoporous–Macroporous TiO2 Photoanode Obtained Using ZnO Template. Journal of Electronic Materials, 2017, 46, 3801-3807.	2.2	12
27	Investigation of Cu2ZnSnS4 nanoparticles for thin-film solar cellÂapplications. Thin Solid Films, 2017, 628, 163-169.	1.8	10
28	Elucidating the relationship between crystallo-chemistry and optical properties of CIGS nanocrystals. Nanotechnology, 2017, 28, 045708.	2.6	4
29	Thienylvinylenethienyl and Naphthalene Core Substituted with Triphenylamines—Highly Efficient Hole Transporting Materials and Their Comparative Study for Inverted Perovskite Solar Cells. Solar Rrl, 2017, 1, 1700105.	5.8	59
30	Unique Reversible Crystal-to-Crystal Phase Transition—Structural and Functional Properties of Fused Ladder Thienoarenes. Chemistry of Materials, 2017, 29, 7686-7696.	6.7	8
31	Low-frequency optical phonon modes and carrier mobility in the halide perovskite CH3NH3PbBr3 using terahertz time-domain spectroscopy. Applied Physics Letters, 2017, 111, .	3.3	54
32	Facile in situ synthesis of stable luminescent organic–inorganic lead halide perovskite nanoparticles in a polymer matrix. Journal of Materials Chemistry C, 2017, 5, 7207-7214.	5.5	26
33	Reflective perovskite solar cells for efficient tandem applications. Journal of Materials Chemistry C, 2017, 5, 134-139.	5.5	27
34	The role of ion exchange in the passivation of In(Zn)P nanocrystals with ZnS. Scientific Reports, 2016, 6, 22818.	3.3	10
35	Semiconducting Carbon Nanotubes for Improved Efficiency and Thermal Stability of Polymer–Fullerene Solar Cells. Advanced Functional Materials, 2016, 26, 51-65.	14.9	54
36	Synthesis of ligand-free CZTS nanoparticles via a facile hot injection route. Nanotechnology, 2016, 27, 185603.	2.6	17

#	Article	IF	CITATIONS
37	Dense, Regular GaAs Nanowire Arrays by Catalyst-Free Vapor Phase Epitaxy for Light Harvesting. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22484-22492.	8.0	2
38	Effect of Zinc Incorporation on the Performance of Red Light Emitting InP Core Nanocrystals. Inorganic Chemistry, 2016, 55, 8381-8386.	4.0	31
39	Effectiveness of External Electric Field Treatment of Conjugated Polymers in Bulk-Heterojunction Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied Materials & Solar Cells.	8.0	22
40	A fused thieno [3,2-b] thiophene-dithiophene based donor molecule for organic photovoltaics: a structural comparative study with indacenodithiophene. Journal of Materials Chemistry C, 2016, 4, 9656-9663.	5.5	5
41	Molecularly Engineered Organic-Inorganic Hybrid Perovskite with Multiple Quantum Well Structure for Multicolored Light-Emitting Diodes. Scientific Reports, 2016, 6, 33546.	3.3	95
42	Phonon Mode Transformation Across the Orthohombic–Tetragonal Phase Transition in a Lead Iodide Perovskite CH ₃ NH ₃ Pbl ₃ : A Terahertz Time-Domain Spectroscopy Approach. Journal of Physical Chemistry Letters, 2016, 7, 1-6.	4.6	109
43	Elucidating the role of disorder and free-carrier recombination kinetics in CH3NH3PbI3 perovskite films. Nature Communications, 2015, 6, 7903.	12.8	132
44	Synthesis of large CZTSe nanoparticles through a two-step hot-injection method. RSC Advances, 2015, 5, 96593-96600.	3.6	18
45	Correlation between blend morphology and recombination dynamics in additive-added P3HT:PCBM solar cells. Physical Chemistry Chemical Physics, 2015, 17, 26111-26120.	2.8	15
46	Perovskite-based solar cells: impact of morphology and device architecture on device performance. Journal of Materials Chemistry A, 2015, 3, 8943-8969.	10.3	522
47	Formation of Culn(S Se1â^')2 microcrystals from CulnSe2 nanoparticles by two step solvothermal method. Journal of Alloys and Compounds, 2015, 618, 522-526.	5.5	9
48	Optical properties of organometallic perovskite: An ab initio study using relativistic GW correction and Bethe-Salpeter equation. Europhysics Letters, 2014, 108, 67015.	2.0	47
49	Reducing Massâ€Transport Limitations in Cobaltâ€Electrolyteâ€Based Dyeâ€Sensitized Solar Cells by Photoanode Modification. ChemPhysChem, 2014, 15, 1216-1221.	2.1	20
50	Charge dynamics in alkanedithiols-additives in P3HT:PCBM bulk heterojunction solar cells. Proceedings of SPIE, 2014, , .	0.8	0
51	Carboxylic acid mediated self-assembly of small molecules for organic thin film transistors. Organic Electronics, 2014, 15, 1592-1597.	2.6	4
52	The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy and Environmental Science, 2014, 7, 399-407.	30.8	965
53	Electron Transport Limitation in P3HT:CdSe Nanorods Hybrid Solar Cells. ACS Applied Materials & Samp; Interfaces, 2014, 6, 894-902.	8.0	10
54	Understanding the Role of Single Molecular ZnS Precursors in the Synthesis of In(Zn)P/ZnS Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18233-18242.	8.0	26

#	Article	IF	Citations
55	A high voltage solar cell using a donor–acceptor conjugated polymer based on pyrrolo[3,4-f]-2,1,3-benzothiadiazole-5,7-dione. Journal of Materials Chemistry A, 2014, 2, 17925-17933.	10.3	29
56	Quinoxaline-functionalized C ₆₀ derivatives as electron acceptors in organic solar cells. RSC Advances, 2014, 4, 25291-25301.	3.6	23
57	Polymer nanofibers: preserving nanomorphology in ternary blend organic photovoltaics. Physical Chemistry Chemical Physics, 2014, 16, 23829-23836.	2.8	9
58	Environmentally friendly solution route to kesterite Cu ₂ ZnSn(S,Se) ₄ thin films for solar cell applications. RSC Advances, 2014, 4, 26888-26894.	3.6	23
59	Novel self-assembled 2D networks based on zinc metal ion co-ordination: synthesis and comparative study with 3D networks. RSC Advances, 2014, 4, 17680-17693.	3.6	8
60	Performance Improvements in Polymer Nanofiber/Fullerene Solar Cells with External Electric Field Treatment. Journal of Physical Chemistry C, 2014, 118, 11285-11291.	3.1	26
61	Synthesis of Twoâ€Dimensional Transitionâ€Metal Phosphates with Highly Ordered Mesoporous Structures for Lithiumâ€Ion Battery Applications. Angewandte Chemie - International Edition, 2014, 53, 9352-9355.	13.8	128
62	Phase-Selective Synthesis of Cu ₂ ZnSnS ₄ Nanocrystals using Different Sulfur Precursors. Inorganic Chemistry, 2014, 53, 10874-10880.	4.0	71
63	Synthesis and photovoltaic properties of novel C60 bisadducts based on benzo[2,1,3]-thiadiazole. Tetrahedron, 2014, 70, 6217-6221.	1.9	22
64	Co3O4/nitrogen modified graphene electrode as Li-ion battery anode with high reversible capacity and improved initial cycle performance. Nano Energy, 2014, 3, 134-143.	16.0	72
65	Nanocrystalline copper indium selenide (CuInSe2) particles for solar energy harvesting. RSC Advances, 2013, 3, 9829.	3.6	10
66	Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH ₃ NH ₃ Pbl ₃ . Science, 2013, 342, 344-347.	12.6	6,060
67	Enhancing the Performance of Solution-Processed Bulk-Heterojunction Solar Cells Using Hydrogen-Bonding-Induced Self-Organization of Small Molecules. ACS Applied Materials & Samp; Interfaces, 2013, 5, 13265-13274.	8.0	25
68	Synthesis of Cu ₂ SnSe ₃ Nanocrystals for Solution Processable Photovoltaic Cells. Inorganic Chemistry, 2013, 52, 1722-1728.	4.0	51
69	Isoindigo dye incorporated copolymers with naphthalene and anthracene: promising materials for stable organic field effect transistors. Polymer Chemistry, 2013, 4, 1983.	3.9	44
70	Comparative studies on the electrochemical and optical properties of representative benzo $[1,2-c;4,5-c$ a \in 2]bis $[1,2,5]$ thiadiazole, $[1,2,5]$ -thiadiazolo $[3,4-g]$ quinoxaline and pyrazino $[2,3-g]$ quinoxaline derivatives. Journal of Materials Chemistry C, 2013, 1, 1745.	5 . 5	20
71	Picosecond dynamics of internal exciton transitions in CdSe nanorods. Physical Review B, 2013, 88, .	3.2	7
72	From benzobisthiadiazole, thiadiazoloquinoxaline to pyrazinoquinoxaline based polymers: effects of aromatic substituents on the performance of organic photovoltaics. Journal of Materials Chemistry, 2012, 22, 18528.	6.7	30

#	Article	IF	CITATIONS
73	Light scattering enhancement from sub-micrometer cavities in the photoanode for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 16201.	6.7	50
74	Controlled synthesis of CdE (E = S, Se and Te) nanowires. RSC Advances, 2012, 2, 5243.	3.6	36
75	Zn-Doped SnO ₂ Nanocrystals as Efficient DSSC Photoanode Material and Remarkable Photocurrent Enhancement by Interface Modification. Journal of the Electrochemical Society, 2012, 159, H735-H739.	2.9	17
76	Understanding polycarbazole-based polymer:CdSe hybrid solar cells. Nanotechnology, 2012, 23, 315401.	2.6	23
77	Carrier Dynamics in Polymer Nanofiber:Fullerene Solar Cells. Journal of Physical Chemistry C, 2012, 116, 18015-18022.	3.1	25
78	Evolution Pathway of CIGSe Nanocrystals for Solar Cell Applications. Journal of Physical Chemistry C, 2012, 116, 8202-8209.	3.1	55
79	New 3D supramolecular Zn(ii)-coordinated self-assembled organic networks. Journal of Materials Chemistry, 2012, 22, 6218.	6.7	18
80	Conjugated polymers based on dicarboxylic imideâ€substituted isothianaphthene and their applications in solar cells. Journal of Polymer Science Part A, 2012, 50, 250-260.	2.3	19
81	Metal/metal sulfide functionalized single-walled carbon nanotubes: FTO-free counter electrodes for dye sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 9906.	2.8	23
82	Solvent additives and their effects on blend morphologies of bulk heterojunctions. Journal of Materials Chemistry, 2011, 21, 242-250.	6.7	127
83	Hydrothermal Synthesis of High Electron Mobility Zn-doped SnO ₂ Nanoflowers as Photoanode Material for Efficient Dye-Sensitized Solar Cells. Chemistry of Materials, 2011, 23, 3938-3945.	6.7	206
84	A new insight into controlling poly(3-hexylthiophene) nanofiber growth through a mixed-solvent approach for organic photovoltaics applications. Journal of Materials Chemistry, 2011, 21, 377-386.	6.7	138
85	Substituent effect on the electronic properties of pyrazino [2,3-g] quinoxaline molecules. Journal of Materials Chemistry, 2011, 21, 17798.	6.7	12
86	Synthesis of Low Band Gap [1,2,5]-Thiadiazolo[3,4- <i>g</i>]quinoxaline and Pyrazino[2,3- <i>g</i>]quinoxaline Derivatives by Selective Reduction of Benzo[1,2- <i>c</i> ,4,5- <i>c</i>)a \in 2]bis[1,2,5]thiadiazole. Organic Letters, 2011, 13, 46-49.	4.6	65
87	Synthesis and Characterization of [1,2,5]Chalcogenazolo[3,4-f]benzo[1,2,3]triazole and [1,2,3]Triazolo[3,4-g]quinoxaline Derivatives. Organic Letters, 2011, 13, 4612-4615.	4.6	46
88	Printable photo-supercapacitor using single-walled carbon nanotubes. Energy and Environmental Science, 2011, 4, 413-416.	30.8	188
89	Solution processed transition metal sulfides: application as counter electrodes in dye sensitized solar cells (DSCs). Physical Chemistry Chemical Physics, 2011, 13, 19307.	2.8	121
90	Design of single peptides for self-assembled conduction channels. Nanotechnology, 2011, 22, 215606.	2.6	7

#	Article	IF	Citations
91	Understanding the Effect of Surface Chemistry on Charge Generation and Transport in Poly (3-hexylthiophene)/CdSe Hybrid Solar Cells. ACS Applied Materials & Enterfaces, 2011, 3, 287-292.	8.0	39
92	Solution-Processed Nanocrystalline TiO ₂ Buffer Layer Used for Improving the Performance of Organic Photovoltaics. ACS Applied Materials & Samp; Interfaces, 2011, 3, 1063-1067.	8.0	40
93	Controlled growth of hematite (\hat{l} ±-Fe2O3) nanorod array on fluorine doped tin oxide: Synthesis and photoelectrochemical properties. Electrochemistry Communications, 2011, 13, 951-954.	4.7	88
94	Novel Zn–Sn–O nanocactus with excellent transport properties as photoanode material for high performance dye-sensitized solar cells. Nanoscale, 2011, 3, 4640.	5.6	15
95	Influences of graphene oxide support on the electrochemical performances of graphene oxide-MnO2 nanocomposites. Nanoscale Research Letters, 2011, 6, 531.	5.7	95
96	New moderate bandgap polymers containing alkoxysubstitutedâ€benzo[c][1,2,5]thiadiazole and thiopheneâ€based units. Journal of Polymer Science Part A, 2011, 49, 4387-4397.	2.3	22
97	Stability studies of CdSe nanocrystals in an aqueous environment. Nanotechnology, 2011, 22, 275706.	2.6	14
98	Cu-S Nanocabbage Films with Tunable Optical Bandgap and Substantially Improved Stability by Pulse Electrodeposition. Journal of the Electrochemical Society, 2011, 158, E60.	2.9	3
99	Time-resolved terahertz spectroscopy of conjugated polymer/CdSe nanorod composites. Proceedings of SPIE, 2010, , .	0.8	1
100	FeCl ₃ â€Based Fewâ€Layer Graphene Intercalation Compounds: Single Linear Dispersion Electronic Band Structure and Strong Charge Transfer Doping. Advanced Functional Materials, 2010, 20, 3504-3509.	14.9	154
101	The influence of polarity of additive molecules on micelle structures of polystyrene-block-poly(4-vinylpyridine) in the fabrication of nano-porous templates. Journal of Colloid and Interface Science, 2010, 351, 69-76.	9.4	3
102	Printing materials for electronic devices. International Journal of Materials Research, 2010, 101, 236-250.	0.3	20
103	Solution processable ter-anthrylene-ethynylenes semiconductors: thin film transistor properties and STM study on HOPG and Au(111). Journal of Materials Chemistry, 2010, 20, 2448.	6.7	15
104	The Role of Poly(3-hexylthiophene) Nanofibers in an All-Polymer Blend with a Polyfluorene Copolymer for Solar Cell Applications. Journal of Physical Chemistry C, 2010, 114, 9459-9468.	3.1	100
105	One-Pot Synthesis of 4,8-Dibromobenzo[1,2- <i>c</i> ;4,5- <i>c</i> ′]bis[1,2,5]thiadiazole. Organic Letters, 2010, 12, 3340-3343.	4.6	53
106	Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes. ACS Nano, 2010, 4, 5263-5268.	14.6	566
107	Synthesis of monodisperse CdS nanowires and their photovoltaic applications. Thin Solid Films, 2009, 517, 6430-6434.	1.8	26
108	Controlling Growth of CdSe Nanowires through Ligand Optimization. Chemistry of Materials, 2009, 21, 3710-3718.	6.7	40

#	Article	IF	Citations
109	Micellar poly(styrene-b-4-vinylpyridine)-nanoparticle hybrid system for non-volatile organic transistor memory. Journal of Materials Chemistry, 2009, 19, 7354.	6.7	99
110	Controlled Synthesis of CdTe and CdSe Multiblock Heteronanostructures. Chemistry of Materials, 2009, 21, 1465-1470.	6.7	25
111	Direct Observation of Alkyl Chain Interdigitation in Conjugated Polyquarterthiophene Selfâ€Organized on Graphite Surfaces. Macromolecular Rapid Communications, 2008, 29, 1197-1202.	3.9	53
112	Nonâ€Volatile Organic Memory Applications Enabled by In Situ Synthesis of Gold Nanoparticles in a Selfâ€Assembled Block Copolymer. Advanced Materials, 2008, 20, 2325-2331.	21.0	186
113	Controlled chemical stabilization of self-assembled PS-P4VP nanostructures. Journal of Colloid and Interface Science, 2008, 317, 255-263.	9.4	14
114	Synthesis and characterization of one-dimensional CdSe by a novel reverse micelle assisted hydrothermal method. Journal of Colloid and Interface Science, 2008, 320, 491-500.	9.4	58
115	Novel self assembled monolayers of allyl phenyl thiophene ether as potential dielectric material for organic thin film transistors. Thin Solid Films, 2008, 516, 5645-5648.	1.8	8
116	Understanding and Controlling the Growth of Monodisperse CdS Nanowires in Solution. Chemistry of Materials, 2008, 20, 5444-5452.	6.7	43
117	9,10-Ter-anthrylene-ethynylene: a new molecular architecture for solution processed anthracene-based thin film transistors. Journal of Materials Chemistry, 2008, 18, 786.	6.7	31
118	Nanopattern formation using a chemically modified PS-P4VP diblock copolymer. Nanotechnology, 2007, 18, 075304.	2.6	12
119	One-step synthesis of titania nanoparticles from PS-P4VP diblock copolymer solution. Nanotechnology, 2007, 18, 135605.	2.6	24
120	Role of Multivalent Cations in the Self-Assembly of Phospholipidâ^DNA Complexes. Journal of Physical Chemistry B, 2007, 111, 14233-14238.	2.6	21
121	Phospholipid-Based Artificial Viruses Assembled by Multivalent Cations. Biophysical Journal, 2007, 93, 637-644.	0.5	25
122	Controlled synthesis and association behavior of graft Pluronic in aqueous solutions. Journal of Colloid and Interface Science, 2007, 306, 398-404.	9.4	31
123	Synthesis and characterization of CdSe nanorods using a novel microemulsion method at moderate temperature. Journal of Colloid and Interface Science, 2007, 316, 771-778.	9.4	53
124	Selective Betainization of PSâ^'P4VP and Solution Properties. Langmuir, 2006, 22, 319-324.	3.5	9
125	Morphology Evolution in a Diblock Copolymer Film. Journal of Nanoscience and Nanotechnology, 2006, 6, 3904-3909.	0.9	6
126	Study of Mixed Micelles and Interaction Parameters for Polymeric Nonionic and Normal Surfactants. Journal of Nanoscience and Nanotechnology, 2006, 6, 3877-3881.	0.9	19

YENG MING LAM

#	ARTICLE	IF	CITATIONS
127	Poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-g-poly(vinyl pyrrolidone): Synthesis and characterization. Journal of Colloid and Interface Science, 2005, 285, 80-85.	9.4	14
128	Poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide)-g-poly(vinylpyrrolidone): Association behavior in aqueous solution and interaction with anionic surfactants. Journal of Colloid and Interface Science, 2005, 285, 74-79.	9.4	42
129	High-throughput screening for carbon nanotube production. Carbon, 2004, 42, 101-110.	10.3	11
130	Mesoscale Simulation and cryo-TEM of Nanoscale Drug Delivery Systems. Molecular Simulation, 2004, 30, 239-247.	2.0	17
131	Mesoscale simulation of block copolymers in aqueous solution: parameterisation, micelle growth kinetics and the effect of temperature and concentration morphology. Polymer, 2003, 44, 3593-3605.	3.8	73
132	Direct visualisation of micelles of Pluronic block copolymers in aqueous solution by cryo-TEM. Physical Chemistry Chemical Physics, 1999, 1, 3331-3334.	2.8	91
133	Effects of processing parameters on the performance of Al grain refinement master alloys Alî—¸Ti and Alî—¸B in small ingots. Journal of Materials Processing Technology, 1997, 66, 253-257.	6.3	41