
Zhen Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2102697/publications.pdf Version: 2024-02-01

<u>7 μενι Χιι</u>

#	Article	IF	CITATIONS
1	Graphene in Macroscopic Order: Liquid Crystals and Wet-Spun Fibers. Accounts of Chemical Research, 2014, 47, 1267-1276.	7.6	295
2	A Defectâ€Free Principle for Advanced Graphene Cathode of Aluminumâ€Ion Battery. Advanced Materials, 2017, 29, 1605958.	11.1	280
3	Hard–Soft Carbon Composite Anodes with Synergistic Sodium Storage Performance. Advanced Functional Materials, 2019, 29, 1901072.	7.8	191
4	The rational design of biomass-derived carbon materials towards next-generation energy storage: A review. Renewable and Sustainable Energy Reviews, 2020, 134, 110308.	8.2	141
5	Hard carbons for sodium-ion batteries and beyond. Progress in Energy, 2020, 2, 042002.	4.6	130
6	Electrospun Nanofibers-Based Face Masks. Advanced Fiber Materials, 2020, 2, 161-166.	7.9	108
7	Critical insight: challenges and requirements of fibre electrodes for wearable electrochemical energy storage. Energy and Environmental Science, 2019, 12, 2148-2160.	15.6	104
8	Unveiling Polyindole: Freestanding As-electrospun Polyindole Nanofibers and Polyindole/Carbon Nanotubes Composites as Enhanced Electrodes for Flexible All-solid-state Supercapacitors. Electrochimica Acta, 2017, 247, 400-409.	2.6	76
9	Allâ€Celluloseâ€Based Quasiâ€Solidâ€State Sodiumâ€Ion Hybrid Capacitors Enabled by Structural Hierarchy. Advanced Functional Materials, 2019, 29, 1903895.	7.8	75
10	Homogenous metallic deposition regulated by defect-rich skeletons for sodium metal batteries. Energy and Environmental Science, 2021, 14, 6381-6393.	15.6	70
11	Unveiling the role of hydrothermal carbon dots as anodes in sodium-ion batteries with ultrahigh initial coulombic efficiency. Journal of Materials Chemistry A, 2019, 7, 27567-27575.	5.2	69
12	Iceâ€Templated, Sustainable Carbon Aerogels with Hierarchically Tailored Channels for Sodium―and Potassiumâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	67
13	The Role of Hydrothermal Carbonization in Sustainable Sodiumâ€ŀon Battery Anodes. Advanced Energy Materials, 2022, 12, .	10.2	61
14	Screening Heteroatom Configurations for Reversible Sloping Capacity Promises Highâ€Power Naâ€lon Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	58
15	Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides. ACS Nano, 2020, 14, 14579-14604.	7.3	56
16	Surface Self-Assembly of Functional Electroactive Nanofibers on Textile Yarns as a Facile Approach toward Super Flexible Energy Storage. ACS Applied Energy Materials, 2018, 1, 377-386.	2.5	47
17	Disordered carbon anodes for Na-ion batteries—quo vadis?. Science China Chemistry, 2021, 64, 1679-1692.	4.2	44
18	Multi-scale uniform Li regulation triggered by tunable electric field distribution on oxygen-functionalized porous framework for flexible Li-S full batteries. Energy Storage Materials, 2021, 42, 68-77.	9.5	41

Zhen Xu

#	Article	IF	CITATIONS
19	Iron, Nitrogen Coâ€Doped Carbon Spheres as Low Cost, Scalable Electrocatalysts for the Oxygen Reduction Reaction. Advanced Functional Materials, 2021, 31, 2102974.	7.8	35
20	Cellulose nanocrystal-polyetherimide hybrid nanofibrous interleaves for enhanced interlaminar fracture toughness of carbon fibre/epoxy composites. Composites Science and Technology, 2019, 182, 107744.	3.8	34
21	Toward Emerging Sodiumâ€Based Energy Storage Technologies: From Performance to Sustainability. Advanced Energy Materials, 2022, 12, .	10.2	33
22	Techniques enabling inorganic materials into wearable fiber/yarn and flexible lithium-ion batteries. Energy Storage Materials, 2021, 43, 62-84.	9.5	25
23	Perovskite solar cell-hybrid devices: thermoelectrically, electrochemically, and piezoelectrically connected power packs. Journal of Materials Chemistry A, 2019, 7, 26661-26692.	5.2	24
24	Screening Heteroatom Configurations for Reversible Sloping Capacity Promises Highâ€Power Naâ€lon Batteries. Angewandte Chemie, 0, , .	1.6	23
25	Strategies for High Energy Density Dualâ€lon Batteries Using Carbonâ€Based Cathodes. Advanced Energy and Sustainability Research, 2021, 2, 2100074.	2.8	21
26	Carbon Composite Anodes with Tunable Microstructures for Potassiumâ€lon Batteries. Batteries and Supercaps, 2021, 4, 663-670.	2.4	16
27	Achieving high initial Coulombic efficiency for competent Na storage by microstructure tailoring from chiral nematic nanocrystalline cellulose. , 2022, 4, 914-923.		13
28	Homogeneous electric field and Li+ flux regulation in three-dimensional nanofibrous composite framework for ultra-long-life lithium metal anode. Journal of Colloid and Interface Science, 2022, 614, 138-146.	5.0	11
29	A life cycle assessment of hard carbon anodes for sodium-ion batteries. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200340.	1.6	10
30	A Comparative Technoâ€Economic and Lifecycle Analysis of Biomassâ€Derived Anode Materials for Lithium― and Sodiumâ€Ion Batteries. Advanced Sustainable Systems, 2022, 6, .	2.7	6
31	Sodiumâ€lon Batteries: Hard–Soft Carbon Composite Anodes with Synergistic Sodium Storage Performance (Adv. Funct. Mater. 24/2019). Advanced Functional Materials, 2019, 29, 1970164.	7.8	4