Aimee Payne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2102693/publications.pdf

Version: 2024-02-01

136950 133252 3,851 74 32 59 h-index citations g-index papers 180 180 180 3842 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science, 2016, 353, 179-184.	12.6	468
2	Pemphigus. Nature Reviews Disease Primers, 2017, 3, 17026.	30.5	371
3	Diagnosis and management of pemphigus: Recommendations of an international panel of experts. Journal of the American Academy of Dermatology, 2020, 82, 575-585.e1.	1.2	224
4	Genetic and functional characterization of human pemphigus vulgaris monoclonal autoantibodies isolated by phage display. Journal of Clinical Investigation, 2005, 115, 888-899.	8.2	198
5	Reliability and Convergent Validity of Two Outcome Instruments for Pemphigus. Journal of Investigative Dermatology, 2009, 129, 2404-2410.	0.7	183
6	Desmosomes and disease: pemphigus and bullous impetigo. Current Opinion in Cell Biology, 2004, 16, 536-543.	5.4	137
7	Identifying the Target Cells and Mechanisms of Merkel Cell Polyomavirus Infection. Cell Host and Microbe, 2016, 19, 775-787.	11.0	133
8	Mechanisms Causing Loss of Keratinocyte Cohesion in Pemphigus. Journal of Investigative Dermatology, 2018, 138, 32-37.	0.7	113
9	Cytotoxic CD4+ T lymphocytes may induce endothelial cell apoptosis in systemic sclerosis. Journal of Clinical Investigation, 2020, 130, 2451-2464.	8.2	106
10	Supraphysiologic control over HIV-1 replication mediated by CD8 T cells expressing a re-engineered CD4-based chimeric antigen receptor. PLoS Pathogens, 2017, 13, e1006613.	4.7	106
11	Signaling Dependent and Independent Mechanisms in Pemphigus Vulgaris Blister Formation. PLoS ONE, 2012, 7, e50696.	2.5	89
12	Persistence of Anti-Desmoglein 3 IgG + B-Cell Clones in Pemphigus Patients over Years. Journal of Investigative Dermatology, 2015, 135, 742-749.	0.7	83
13	Autoimmunity to Desmocollin 3 in Pemphigus Vulgaris. American Journal of Pathology, 2010, 177, 2724-2730.	3.8	82
14	p38 MAPK Activation Is Downstream of the Loss of Intercellular Adhesion in Pemphigus Vulgaris. Journal of Biological Chemistry, 2011, 286, 1283-1291.	3.4	72
15	Dermatologic Toxicity of Chemotherapeutic Agents. Seminars in Oncology, 2006, 33, 86-97.	2.2	70
16	Antigen-specific B cell depletion for precision therapy of mucosal pemphigus vulgaris. Journal of Clinical Investigation, 2020, 130, 6317-6324.	8.2	66
17	Shared VH1-46 gene usage by pemphigus vulgaris autoantibodies indicates common humoral immune responses among patients. Nature Communications, 2014, 5, 4167.	12.8	63
18	Cutaneous autoimmune effects in the setting of therapeutic immune checkpoint inhibition for metastatic melanoma. Journal of Cutaneous Pathology, 2016, 43, 787-791.	1.3	63

#	Article	IF	CITATIONS
19	Disruption of Desmosome Assembly by Monovalent Human Pemphigus Vulgaris Monoclonal Antibodies. Journal of Investigative Dermatology, 2009, 129, 908-918.	0.7	60
20	Enrichment of total serum IgG4 in patients with pemphigus. British Journal of Dermatology, 2012, 167, 1245-1253.	1.5	59
21	Expert recommendations for the management of autoimmune bullous diseases during the COVIDâ€19 pandemic. Journal of the European Academy of Dermatology and Venereology, 2020, 34, e302-e303.	2.4	53
22	Homologous regions of autoantibody heavy chain complementarity-determining region 3 (H-CDR3) in patients with pemphigus cause pathogenicity. Journal of Clinical Investigation, 2010, 120, 4111-4117.	8.2	51
23	Proteomic Analysis of Pemphigus Autoantibodies Indicates a Larger, More Diverse, and More Dynamic Repertoire than Determined by B Cell Genetics. Cell Reports, 2017, 18, 237-247.	6.4	49
24	MAPKAP Kinase 2 (MK2)-Dependent and -Independent Models of Blister Formation in Pemphigus Vulgaris. Journal of Investigative Dermatology, 2014, 134, 68-76.	0.7	47
25	Factors Associated With Complete Remission After Rituximab Therapy for Pemphigus. JAMA Dermatology, 2019, 155, 1404.	4.1	42
26	Pathogenic human monoclonal antibody against desmoglein 3. Clinical Immunology, 2006, 120, 68-75.	3.2	41
27	Reliability and Convergent Validity of the Cutaneous Sarcoidosis Activity and Morphology Instrument for Assessing Cutaneous Sarcoidosis. JAMA Dermatology, 2013, 149, 550.	4.1	40
28	Two Novel TP63 Mutations Associated With the Ankyloblepharon, Ectodermal Defects, and Cleft Lip and Palate Syndrome. Archives of Dermatology, 2005, 141, 1567-73.	1.4	38
29	Exploring intentions of physician-scientist trainees: factors influencing MD and MD/PhD interest in research careers. BMC Medical Education, 2017, 17, 115.	2.4	38
30	Binding and Neutralization Activity of Human IgG1 and IgG3 from Serum of HIV-Infected Individuals. AIDS Research and Human Retroviruses, 2003, 19, 785-792.	1.1	37
31	The Neutralization Properties of a HIV-Specific Antibody Are Markedly Altered by Glycosylation Events Outside the Antigen-Binding Domain. Journal of Immunology, 2007, 178, 7132-7138.	0.8	37
32	Meeting Report of the Pathogenesis of Pemphigus and Pemphigoid Meeting in Munich, September 2016. Journal of Investigative Dermatology, 2017, 137, 1199-1203.	0.7	34
33	Antibodies to the Desmoglein 1 Precursor Proprotein but Not to the Mature Cell Surface Protein Cloned from Individuals without Pemphigus. Journal of Immunology, 2009, 183, 5615-5621.	0.8	31
34	Single-Cell Analysis Suggests that Ongoing Affinity Maturation Drives the Emergence of Pemphigus Vulgaris Autoimmune Disease. Cell Reports, 2019, 28, 909-922.e6.	6.4	31
35	Setting the target for pemphigus vulgaris therapy. JCI Insight, 2017, 2, e92021.	5.0	30
36	Targeting Pemphigus Autoantibodies through their Heavy-Chain Variable Region Genes. Journal of Investigative Dermatology, 2007, 127, 1681-1691.	0.7	28

#	Article	IF	CITATIONS
37	Updated international expert recommendations for the management of autoimmune bullous diseases during the COVIDâ€19 pandemic. Journal of the European Academy of Dermatology and Venereology, 2021, 35, e412-e414.	2.4	28
38	Perspective From the 5th International Pemphigus and Pemphigoid Foundation Scientific Conference. Frontiers in Medicine, 2018, 5, 306.	2.6	27
39	The dual nature of interleukin-10 in pemphigus vulgaris. Cytokine, 2015, 73, 335-341.	3.2	26
40	Evidence of determinant spreading in the antibody responses to prostate cell surface antigens in patients immunized with prostate-specific antigen. Clinical Cancer Research, 2002, 8, 368-73.	7.0	26
41	Rituximab therapy in pemphigus and other autoantibody-mediated diseases. F1000Research, 2017, 6, 83.	1.6	23
42	Autoreactive IgG and IgA B Cells Evolve through Distinct Subclass Switch Pathways in the Autoimmune Disease Pemphigus Vulgaris. Cell Reports, 2018, 24, 2370-2380.	6.4	23
43	Clinical outcome and safety of rituximab therapy for pemphigoid diseases. Journal of the American Academy of Dermatology, 2020, 82, 1237-1239.	1.2	23
44	Reliability and Validity of Cutaneous Sarcoidosis Outcome Instruments Among Dermatologists, Pulmonologists, and Rheumatologists. JAMA Dermatology, 2015, 151, 1317.	4.1	21
45	Determinants of VH1-46 Cross-Reactivity to Pemphigus Vulgaris Autoantigen Desmoglein 3 and Rotavirus Antigen VP6. Journal of Immunology, 2016, 197, 1065-1073.	0.8	21
46	Biological controls for standardization and interpretation of adaptive immune receptor repertoire profiling. ELife, $2021,10,10$	6.0	21
47	Pathogenicity and Epitope Characteristics Do Not Differ in IgG Subclass-Switched Anti-Desmoglein 3 IgG1 and IgG4 Autoantibodies in Pemphigus Vulgaris. PLoS ONE, 2016, 11, e0156800.	2.5	21
48	Pemphigus and Pemphigoid: From Disease Mechanisms to Druggable Pathways. Journal of Investigative Dermatology, 2022, 142, 907-914.	0.7	21
49	The reliability of the Cutaneous Dermatomyositis Disease Area and Severity Index (<scp>CDASI</scp>) among dermatologists, rheumatologists and neurologists. British Journal of Dermatology, 2017, 176, 423-430.	1.5	19
50	Stat3 regulates desmoglein 3 transcription in epithelial keratinocytes. JCI Insight, 2017, 2, .	5.0	19
51	Nanorobotic Investigation Identifies Novel Visual, Structural and Functional Correlates of Autoimmune Pathology in a Blistering Skin Disease Model. PLoS ONE, 2014, 9, e106895.	2.5	17
52	World Workshop on Oral Medicine <scp>VII</scp> : Immunobiologics for salivary gland disease in Sjögren's syndrome: A systematic review. Oral Diseases, 2019, 25, 102-110.	3.0	16
53	World Workshop of Oral Medicine VII: A systematic review of immunobiologic therapy for oral manifestations of pemphigoid and pemphigus. Oral Diseases, 2019, 25, 111-121.	3.0	13
54	Assessing the Correlation Between Disease Severity Indices and Quality of Life Measurement Tools in Pemphigus. Frontiers in Immunology, 2019, 10, 2571.	4.8	13

#	Article	IF	Citations
55	Comparison of C3d immunohistochemical staining to enzyme-linked immunosorbent assay and immunofluorescence for diagnosis of bullous pemphigoid. Journal of the American Academy of Dermatology, 2020, 83, 172-178.	1.2	11
56	Increasing the Complement ofÂTherapeutic Options in BullousÂPemphigoid. Journal of Investigative Dermatology, 2018, 138, 246-248.	0.7	10
57	Anti-BP180 Autoantibodies Are Present in Stroke and Recognize Human Cutaneous BP180 and BP180-NC16A. Frontiers in Immunology, 2019, 10, 236.	4.8	10
58	On the mark: genetically engineered immunotherapies for autoimmunity. Current Opinion in Immunology, 2019, 61, 69-73.	5 . 5	9
59	Temporal Outcomes after Rituximab Therapy for Pemphigus Vulgaris. Journal of Investigative Dermatology, 2022, 142, 1058-1064.e7.	0.7	9
60	Overcoming the Constraints of Anti-HIV/CD89 Bispecific Antibodies That Limit Viral Inhibition. Journal of Immunology Research, 2016, 2016, 1-5.	2.2	8
61	RPGRIP1L is required for stabilizing epidermal keratinocyte adhesion through regulating desmoglein endocytosis. PLoS Genetics, 2019, 15, e1007914.	3.5	8
62	Dichotomy in cross-clade reactivity and neutralization by HIV-1 sera: Implications for active and passive immunotherapy. Journal of Medical Virology, 2005, 76, 146-152.	5.0	6
63	Detection of underlying dementia in bullous pemphigoid patients using cognitive evaluation tests: a multicenter case-control study. Annals of Translational Medicine, 2020, 8, 1397-1397.	1.7	4
64	Custom dental trays with topical corticosteroids for management of gingival lesions of mucous membrane pemphigoid. International Journal of Dermatology, 2020, 59, e211-e213.	1.0	3
65	Plakophilins, Desmogleins, and Pemphigus: The Tail Wagging the Dog. Journal of Investigative Dermatology, 2014, 134, 874-876.	0.7	2
66	Clinical significance of immunoglobulin E in bullous pemphigoid. British Journal of Dermatology, 2017, 177, 13-14.	1.5	2
67	Establishing cutâ€off values for mild, moderate and severe disease in patients with pemphigus using the Pemphigus Disease Area Index. British Journal of Dermatology, 2021, 184, 975-977.	1.5	2
68	Quantifying disease extent in pemphigus. British Journal of Dermatology, 2016, 175, 18-19.	1.5	1
69	Authors' reply: Paraneoplastic autoimmune multiorgan syndrome and paraneoplastic pemphigus describe the same spectrum of disease pathology. Nature Reviews Disease Primers, 2018, 4, 18013.	30.5	1
70	Identifying the required degree of disease clearance to improve quality of life in pemphigus vulgaris. British Journal of Dermatology, 2021, 184, 573-575.	1.5	1
71	B-cell targeted therapies in pemphigus. Italian Journal of Dermatology and Venereology, 2021, 156, .	0.2	1
72	B-cell targeted therapies in pemphigus. Italian Journal of Dermatology and Venereology, 2021, 156, 161-173.	0.2	1

AIMEE PAYNE

#	Article	IF	CITATIONS
73	Cloning and genetic characterization of human pemphigus autoantibodies. Journal of the American Academy of Dermatology, 2006, 55, e2.	1.2	0
74	2504. Journal of Clinical and Translational Science, 2017, 1, 10-10.	0.6	0