Scott W Donne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2102689/publications.pdf

Version: 2024-02-01

164 papers 5,972 citations

43 h-index 91884 69 g-index

166 all docs

166
docs citations

166 times ranked 6742 citing authors

#	Article	IF	CITATIONS
1	A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. Journal of Hazardous Materials, 2014, 272, 121-128.	12.4	482
2	Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Management, 2013, 4, 323-343.	2.4	310
3	Method Comparison for Deconvoluting Capacitive and Pseudo-Capacitive Contributions to Electrochemical Capacitor Electrode Behavior. Journal of the Electrochemical Society, 2018, 165, A664-A673.	2.9	192
4	Microstructural and associated chemical changes during the composting of a high temperature biochar: Mechanisms for nitrate, phosphate and other nutrient retention and release. Science of the Total Environment, 2018, 618, 1210-1223.	8.0	163
5	Tuning the Catalytic Preference of Ruthenium Catalysts for Nitrogen Reduction by Atomic Dispersion. Advanced Functional Materials, 2020, 30, 1905665.	14.9	159
6	Mineral–Biochar Composites: Molecular Structure and Porosity. Environmental Science & Emp; Technology, 2016, 50, 7706-7714.	10.0	148
7	The Electrochemical Properties of Biochars and How They Affect Soil Redox Properties and Processes. Agronomy, 2015, 5, 322-340.	3.0	122
8	Chemolithotrophic processes in the bacterial communities on the surface of mineral-enriched biochars. ISME Journal, 2017, 11, 1087-1101.	9.8	121
9	The electrochemical oxidation of aqueous sulfur dioxide: A critical review of work with respect to the hybrid sulfur cycle. Electrochimica Acta, 2010, 55, 573-591.	5.2	111
10	Investigation on capacity fading of aqueous MnO2·nH2O electrochemical capacitor. Journal of Power Sources, 2008, 177, 660-664.	7.8	106
11	Activity of perovskite La1â^'xSrxMnO3 catalysts towards oxygen reduction in alkaline electrolytes. Journal of Power Sources, 2009, 188, 359-366.	7.8	105
12	An RDE and RRDE study into the electrodeposition of manganese dioxide. Electrochimica Acta, 2006, 51, 5773-5784.	5.2	104
13	Effects of Enriched Biochars Containing Magnetic Iron Nanoparticles on Mycorrhizal Colonisation, Plant Growth, Nutrient Uptake and Soil Quality Improvement. Pedosphere, 2015, 25, 749-760.	4.0	96
14	Hydrothermal MnO2: synthesis, structure, morphology and discharge performance. Journal of Power Sources, 2005, 139, 325-341.	7.8	93
15	Enhanced manganese dioxide supercapacitor electrodes produced by electrodeposition. Journal of Power Sources, 2011, 196, 7847-7853.	7.8	93
16	Potassium accumulation between type I hair cells and calyx terminals in mouse crista. Experimental Brain Research, 2011, 210, 607-621.	1.5	88
17	Nanoscale analyses of the surface structure and composition of biochars extracted from field trials or after co-composting using advanced analytical electron microscopy. Geoderma, 2017, 294, 70-79.	5.1	84
18	Nitrogen Doping of Hydrochars Produced Hydrothermal Treatment of Sucrose in H ₂ 0, H ₂ SO ₄ , and NaOH. ACS Sustainable Chemistry and Engineering, 2014, 2, 755-764.	6.7	78

#	Article	IF	CITATIONS
19	Biochar-based fertilizer: Supercharging root membrane potential and biomass yield of rice. Science of the Total Environment, 2020, 713, 136431.	8.0	78
20	Feeding Biochar to Cows: An Innovative Solution for Improving Soil Fertility and Farm Productivity. Pedosphere, 2015, 25, 666-679.	4.0	74
21	Synchrotron based NEXAFS study on nitrogen doped hydrothermal carbon: Insights into surface functionalities and formation mechanisms. Carbon, 2017, 114, 566-578.	10.3	72
22	Thermal stability of biochar and its effects on cadmium sorption capacity. Bioresource Technology, 2017, 246, 48-56.	9.6	69
23	Kinetics of Solid-Gas Reactions and Their Application to Carbonate Looping Systems. Energies, 2019, 12, 2981.	3.1	69
24	Redox Processes at the Manganese Dioxide Electrode: II. Slowâ€Scan Cyclic Voltammetry. Journal of the Electrochemical Society, 1997, 144, 2954-2961.	2.9	68
25	Influence of red mud on mechanical and durability performance of self-compacting concrete. Journal of Hazardous Materials, 2019, 379, 120802.	12.4	64
26	Structure, morphology and electrochemical behaviour of manganese oxides prepared by controlled decomposition of permanganate. Journal of Power Sources, 2010, 195, 367-373.	7.8	62
27	Redox Processes at the Manganese Dioxide Electrode: III. Detection of Soluble and Solid Intermediates during Reduction. Journal of the Electrochemical Society, 1997, 144, 2961-2967.	2.9	61
28	A Step Potential Electrochemical Spectroscopy Analysis of Electrochemical Capacitor Electrode Performance. Electrochimica Acta, 2015, 167, 268-277.	5.2	59
29	Bubble size measurement in electroflotation. Minerals Engineering, 2010, 23, 1058-1065.	4.3	58
30	Developing More Effective Enhanced Biochar Fertilisers for Improvement of Pepper Yield and Quality. Pedosphere, 2015, 25, 703-712.	4.0	58
31	Unsaturated p-Metal-Based Metal–Organic Frameworks for Selective Nitrogen Reduction under Ambient Conditions. ACS Applied Materials & Interfaces, 2020, 12, 44830-44839.	8.0	58
32	Charge storage mechanisms in electrochemical capacitors: Effects of electrode properties on performance. Journal of Power Sources, 2016, 326, 613-623.	7.8	57
33	Redox Processes at the Manganese Dioxide Electrode: I. Constantâ€Current Intermittent Discharge. Journal of the Electrochemical Society, 1997, 144, 2949-2953.	2.9	55
34	Ruthenium(<scp>iii</scp>) polyethyleneimine complexes for bifunctional ammonia production and biomass upgrading. Journal of Materials Chemistry A, 2019, 7, 25433-25440.	10.3	55
35	Electrochemically active surface area effects on the performance of manganese dioxide for electrochemical capacitor applications. Electrochimica Acta, 2013, 104, 140-147.	5.2	53
36	Transition Metal Aluminum Boride as a New Candidate for Ambient-Condition Electrochemical Ammonia Synthesis. Nano-Micro Letters, 2020, 12, 65.	27.0	53

#	Article	IF	CITATIONS
37	Nucleation and Growth of Electrodeposited Manganese Dioxide for Electrochemical Capacitors. Electrochimica Acta, 2014, 120, 219-225.	5.2	52
38	Surface characterization of heat-treated electrolytic manganese dioxide. Journal of Colloid and Interface Science, 2005, 285, 653-664.	9.4	49
39	Cycling and rate performance of Li–LiFePO4 cells in mixed FSI–TFSI room temperature ionic liquids. Journal of Power Sources, 2010, 195, 2029-2035.	7.8	49
40	Separating the Faradaic and Non-Faradaic Contributions to the Total Capacitance for Different Manganese Dioxide Phases. Journal of the Electrochemical Society, 2015, 162, A5096-A5105.	2.9	49
41	Separating Faradaic and Non-Faradaic Charge Storage Contributions in Activated Carbon Electrochemical Capacitors Using Electrochemical Methods. Journal of the Electrochemical Society, 2015, 162, A1246-A1254.	2.9	47
42	Hydrogen bubble flotation of silica. Advanced Powder Technology, 2010, 21, 412-418.	4.1	43
43	Microwave induced MIP synthesis: comparative analysis of thermal and microwave induced polymerisation of caffeine imprinted polymers. New Journal of Chemistry, 2010, 34, 686.	2.8	43
44	Manganese dioxide structural effects on its thermal decomposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1169-1177.	3.5	42
45	Effect of electrolyte cation on the charge storage mechanism of manganese dioxide for electrochemical capacitors. Electrochimica Acta, 2018, 271, 337-350.	5.2	41
46	Electrochemical behaviour of titanium in H2SO4–MnSO4 electrolytes. Electrochimica Acta, 2006, 51, 3338-3345.	5.2	40
47	Cycle stability of birnessite manganese dioxide for electrochemical capacitors. Electrochimica Acta, 2010, 55, 7470-7478.	5.2	37
48	Electrochemical aspects of the Hybrid Sulfur Cycle for large scale hydrogen production. International Journal of Hydrogen Energy, 2014, 39, 11376-11389.	7.1	37
49	Electrochemical Oxidation of Aqueous Sulfur Dioxide II. Comparative Studies on Platinum and Gold Electrodes. Journal of the Electrochemical Society, 2012, 159, F585-F593.	2.9	36
50	Pyrolysis of attapulgite clay blended with yak dung enhances pasture growth and soil health: Characterization and initial field trials. Science of the Total Environment, 2017, 607-608, 184-194.	8.0	36
51	Complications When Differentiating Charge Transfer Processes in Electrochemical Capacitor Materials: Assessment of Cyclic Voltammetry Data. Journal of the Electrochemical Society, 2019, 166, A1370-A1379.	2.9	36
52	Influence of selected coal contaminants on graphitic carbon electro-oxidation for application to the direct carbon fuel cell. Journal of Power Sources, 2014, 260, 140-149.	7.8	35
53	Nitrogen doped heat treated and activated hydrothermal carbon: NEXAFS examination of the carbon surface at different temperatures. Carbon, 2018, 128, 179-190.	10.3	34
54	Friedman method kinetic analysis of CaO-based sorbent for high-temperature thermochemical energy storage. Chemical Engineering Science, 2019, 200, 236-247.	3.8	33

#	Article	IF	CITATIONS
55	Carbon hollow spheres as electrochemical capacitors: Mechanistic insights. Energy Storage Materials, 2020, 24, 550-556.	18.0	33
56	Dynamic Electrodeposition of Manganese Dioxide: Temporal Variation in the Electrodeposition Mechanism. Journal of the Electrochemical Society, 2016, 163, H305-H312.	2.9	32
57	Comparative Kinetic Analysis of CaCO3/CaO Reaction System for Energy Storage and Carbon Capture. Applied Sciences (Switzerland), 2019, 9, 4601.	2.5	32
58	The Spermostatic and Microbicidal Actions of Quinones and Maleimides: Toward a Dual-Purpose Contraceptive Agent. Molecular Pharmacology, 2009, 76, 113-124.	2.3	30
59	An electrochemical quartz crystal microbalance study into the deposition of manganese dioxide. Electrochimica Acta, 2007, 52, 4630-4639.	5.2	29
60	Molecular structures driving pseudo-capacitance in hydrothermal nanostructured carbons. RSC Advances, 2016, 6, 12964-12976.	3.6	28
61	Faradaic and Non-Faradaic Contributions to the Power and Energy Characteristics of Electrolytic Manganese Dioxide for Electrochemical Capacitors. Journal of the Electrochemical Society, 2016, 163, A888-A897.	2.9	28
62	Microporosity of heat-treated manganese dioxide. Journal of Power Sources, 2007, 165, 581-590.	7.8	27
63	Optimising heat treatment environment and atmosphere of electrolytic manganese dioxide for primary Li/MnO 2 batteries. Journal of Power Sources, 2014, 247, 852-857.	7.8	27
64	A step potential electrochemical spectroscopy (SPECS) investigation of anodically electrodeposited thin films of manganese dioxide. Journal of Power Sources, 2017, 359, 520-528.	7.8	27
65	Electrochemical Impedance Spectroscopy Study into the Effect of Titanium Dioxide Added to the Alkaline Manganese Dioxide Cathode. Journal of the Electrochemical Society, 2011, 158, A802.	2.9	25
66	The Effect of Barium Hydroxide on the Rechargeable Performance of Alkaline \hat{l}^3 -MnO ₂ . Journal of the Electrochemical Society, 2012, 159, A999-A1004.	2.9	25
67	Structural effects on the cyclability of the alkaline \hat{I}^3 -MnO2 electrode. Electrochimica Acta, 2011, 56, 5037-5045.	5.2	24
68	Electrolytic Manganese Dioxide Structural and Morphological Effects on Capacitive Performance. Electrochimica Acta, 2016, 191, 479-490.	5.2	24
69	Modelling voltametric data from electrochemical capacitors. Journal of Power Sources, 2019, 417, 193-206.	7.8	24
70	Observed electrochemical oscillations during the oxidation of aqueous sulfur dioxide on a sulfur modified platinum electrode. Electrochimica Acta, 2011, 56, 4224-4230.	5.2	23
71	Active mass analysis on thin films of electrodeposited manganese dioxide for electrochemical capacitors. Electrochimica Acta, 2013, 87, 133-139.	5.2	23
72	Proton diffusion in \hat{I}^3 -manganese dioxide. Journal of Applied Electrochemistry, 2005, 35, 871-878.	2.9	22

#	Article	IF	Citations
73	Optimizing Li/MnO2 batteries: Relating manganese dioxide properties and electrochemical performance. Journal of Power Sources, 2013, 221, 261-265.	7.8	21
74	Carbonate Reduction and the Properties and Applications of Carbon Formed Through Electrochemical Deposition in Molten Carbonates: A Review. Electrochimica Acta, 2015, 176, 1511-1521.	5.2	21
75	Utilization of hydrogen in electroflotation of silica. Advanced Powder Technology, 2011, 22, 482-492.	4.1	20
76	Study on Manganese Dioxide Discharge Using Electrochemical Impedance Spectroscopy. Journal of the Electrochemical Society, 2006, 153, A1332.	2.9	19
77	Chronoamperometric Versus Galvanostatic Preparation of Manganese Oxides for Electrochemical Capacitors. Journal of the Electrochemical Society, 2011, 158, A1160.	2.9	19
78	Heat treated electrolytic manganese dioxide for primary Li/MnO2 batteries: Effect of manganese dioxide properties on electrochemical performance. Electrochimica Acta, 2013, 105, 305-313.	5.2	19
79	The properties and performance of carbon produced through the electrochemical reduction of molten carbonate: A study based on step potential electrochemical spectroscopy. Electrochimica Acta, 2018, 278, 340-351.	5.2	19
80	Mesoporous Biopolymer Architecture Enhanced the Adsorption and Selectivity of Aqueous Heavy-Metal Ions. ACS Omega, 2021, 6, 15316-15331.	3.5	19
81	The Electrochemical Oxidation of Aqueous Sulfur Dioxide. Journal of the Electrochemical Society, 2010, 157, F111.	2.9	18
82	Mass Transport Properties of Manganese Dioxide Phases for Use in Electrochemical Capacitors: Structural Effects on Solid State Diffusion. Journal of the Electrochemical Society, 2013, 160, A1219-A1231.	2.9	18
83	Discharge mechanism of the heat treated electrolytic manganese dioxide cathode in a primary Li/MnO2 battery: An in-situ and ex-situ synchrotron X-ray diffraction study. Journal of Power Sources, 2014, 258, 155-163.	7.8	18
84	The effect of coal type and pyrolysis temperature on the electrochemical activity of coal at a solid carbon anode in molten carbonate media. Journal of Power Sources, 2015, 279, 384-393.	7.8	18
85	Modification of the Step Potential Electrochemical Spectroscopy Analysis Protocol to Improve Outcomes. Journal of the Electrochemical Society, 2019, 166, A2727-A2735.	2.9	18
86	Influence of ammonium salts and temperature on the yield, morphology and chemical structure of hydrothermally carbonized saccharides. SN Applied Sciences, 2019, $1,1.$	2.9	18
87	Application of Combinatorial Methodologies to the Synthesis and Characterization of Electrolytic Manganese Dioxide. Journal of Applied Electrochemistry, 2004, 34, 643-651.	2.9	17
88	Kinetics of Mn2O3 digestion in H2SO4 solutions. Journal of Solid State Chemistry, 2009, 182, 1336-1342.	2.9	17
89	Kinetic analysis of \hat{I}^3 -MnO2 thermal treatment. Journal of Thermal Analysis and Calorimetry, 2011, 105, 113-122.	3.6	17
90	Thermal Treatment Effects on Manganese Dioxide Structure, Morphology and Electrochemical Performance. Journal of the Electrochemical Society, 2011, 158, A905.	2.9	17

#	Article	IF	Citations
91	Characterisation of chemically lithiated heat-treated electrolytic manganese dioxide. Materials Research Bulletin, 2012, 47, 1827-1834.	5.2	17
92	Duty Cycle Effects on the Step Potential Electrochemical Spectroscopy (SPECS) Analysis of the Aqueous Manganese Dioxide Electrode. Journal of the Electrochemical Society, 2018, 165, A593-A602.	2.9	17
93	Electrochemical kinetic behaviour of the aqueous manganese dioxide electrode. Journal of Applied Electrochemistry, 2005, 35, 437-443.	2.9	16
94	Large Amplitude Electrochemical Impedance Spectroscopy for Characterizing the Performance of Electrochemical Capacitors. Journal of the Electrochemical Society, 2014, 161, A648-A656.	2.9	16
95	Heat Treated Electrolytic Manganese Dioxide for Li/MnO2 Batteries: Effect of Precursor Properties. Journal of the Electrochemical Society, 2011, 158, A1036.	2.9	15
96	Modification of Biochar Formation during Slow Pyrolysis in the Presence of Alkali Metal Carbonate Additives. Energy & Samp; Fuels, 2019, 33, 11235-11245.	5.1	15
97	Carbon electro-catalysis in the direct carbon fuel cell utilising alkali metal molten carbonates: A mechanistic review. Journal of Power Sources, 2020, 453, 227662.	7.8	15
98	Co-pyrolysis of wood chips and bentonite/kaolin: Influence of temperatures and minerals on characteristics and carbon sequestration potential of biochar. Science of the Total Environment, 2022, 838, 156081.	8.0	15
99	Electrochemical impedance spectroscopy of the alkaline manganese dioxide electrode. Journal of Applied Electrochemistry, 2004, 34, 159-168.	2.9	14
100	Kinetics of the Thermally-Induced Structural Rearrangement of \hat{I}^3 -MnO ₂ . Journal of Physical Chemistry C, 2014, 118, 24257-24265.	3.1	14
101	Thermal Investigation of a Doped Alkali-Metal Carbonate Ternary Eutectic for Direct Carbon Fuel Cell Applications. Energy & Energ	5.1	14
102	Fabrication of highly and poorly oxidized silver oxide/silver/tin(IV) oxide nanocomposites and their comparative anti-pathogenic properties towards hazardous food pathogens. Journal of Hazardous Materials, 2021, 408, 124896.	12.4	14
103	Role of graphite in self-discharge of nickel(III) oxyhydroxide. Journal of Power Sources, 2007, 174, 186-190.	7.8	13
104	Surface characterisation of chemically reduced electrolytic manganese dioxide. Journal of Colloid and Interface Science, 2008, 320, 210-218.	9.4	13
105	Electrochemical and morphological characterization of electrodeposited poly(2,2′:5′,2″-terthiophene) for photovoltaic applications. Synthetic Metals, 2008, 158, 661-669.	3.9	13
106	Porosity Changes during Reduction of \hat{I}^3 -MnO[sub 2] for Aqueous Alkaline Applications. Journal of the Electrochemical Society, 2008, 155, A817.	2.9	13
107	The Properties of Carbons Derived through the Electrolytic Reduction of Molten Carbonates under Varied Conditions: Part I. A Study Based on Step Potential Electrochemical Spectroscopy. Journal of the Electrochemical Society, 2018, 165, A2608-A2624.	2.9	13
108	Transmission Line Modeling of the Manganese Dioxide Electrode in Concentrated KOH Electrolytes. Journal of Applied Electrochemistry, 2004, 34, 477-486.	2.9	12

#	Article	IF	Citations
109	Using in situ synchrotron x-ray diffraction to study lithium- and sodium-ion batteries: A case study with an unconventional battery electrode (Gd ₂ TiO ₅). Journal of Materials Research, 2015, 30, 381-389.	2.6	12
110	Effect of clay and iron sulphate on volatile and water-extractable organic compounds in bamboo biochars. Journal of Analytical and Applied Pyrolysis, 2018, 133, 22-29.	5.5	12
111	Discharge rate capabilities of alkaline AgCuO2 electrode. Journal of Power Sources, 2007, 172, 962-969.	7.8	11
112	Kinetic Analysis of the Anodic Carbon Oxidation Mechanism in a Molten Carbonate Medium. Electrochimica Acta, 2014, 129, 389-395.	5.2	11
113	Optimized Electrolytic Carbon and Electrolyte Systems for Electrochemical Capacitors. ChemElectroChem, 2020, 7, 266-282.	3.4	11
114	The chemostat: A novel approach to the synthesis of manganese dioxide. Materials Research Bulletin, 1995, 30, 859-869.	5.2	10
115	Water and protons in electrodeposited MnO2 (EMD). Solid State Ionics, 2002, 152-153, 695-701.	2.7	10
116	Examining Manganese Dioxide. Journal of the Electrochemical Society, 2007, 154, A776.	2.9	10
117	Role of Titanium Dioxide in Enhancing the Performance of the Alkaline Manganese Dioxide Cathode. Journal of the Electrochemical Society, 2011, 159, A158-A165.	2.9	10
118	Electrodeposition Mechanism of Cathodically-Prepared Manganese dioxide Thin Films from Permanganate for use in Electrochemical Capacitors. Electrochimica Acta, 2017, 236, 198-211.	5.2	10
119	An investigation of mineral distribution in coking and thermal coal chars as fuels for the direct carbon fuel cell. Fuel, 2018, 217, 11-20.	6.4	10
120	Nitrogen Doped Heat-Treated and Activated Hydrothermal Carbon: Examination of Electrochemical Performance Using Step Potential Electrochemical Spectroscopy. Journal of the Electrochemical Society, 2018, 165, A2840-A2848.	2.9	10
121	Electroanalytical characterization of electrochemical capacitor systems using step potential electrochemical spectroscopy. Electrochimica Acta, 2020, 332, 135508.	5.2	10
122	Influence of counter ions of ammonium for nitrogen doping and carbon properties in hydrothermal carbonization: characterization and supercapacitor performance. Materials Advances, 2021, 2, 384-397.	5.4	10
123	Semiconductor Properties of Electrodeposited Manganese Dioxide for Electrochemical Capacitors: Mott-Schottky Analysis. Journal of the Electrochemical Society, 2021, 168, 020508.	2.9	10
124	In-situ detection of LiMn2O4 dissolution during electrochemical cycling by. Electrochimica Acta, 2021, 386, 138366.	5.2	10
125	Discharge performance of a primary alkaline CuO cathode material prepared via a novel non-aqueous precipitation method. Electrochimica Acta, 2011, 56, 4996-5002.	5.2	9
126	Thermal expansion of manganese dioxide using high-temperature <i>in situ</i> X-ray diffraction. Journal of Applied Crystallography, 2013, 46, 1283-1288.	4.5	9

#	Article	IF	CITATIONS
127	Elucidation of the Discharge Mechanism of CuO Cathode Material in Alkaline Electrolyte. Journal of the Electrochemical Society, 2013, 160, A703-A708.	2.9	9
128	Electrical double layer formation on glassy carbon in aqueous solution. Electrochimica Acta, 2021, 386, 138416.	5.2	9
129	Characterization of solid electrode materials using chronoamperometry: A study of the alkaline \hat{I}^3 -MnO2 electrode. Journal of Power Sources, 2008, 179, 371-380.	7.8	8
130	Thermal Lithiation of Manganese Dioxide: Effect of Low Lithium Concentration (x ≠x0.3 in) Tj ETQq0 0 0 rgBT /C Electrochemical Society, 2012, 159, A904-A908.	Overlock 1 2.9	0 Tf 50 627 8
131	Detection of Soluble Mn(III) Species during Cycling of Alkaline Î ³ -MnO ₂ and the Influence of Barium Hydroxide Inclusion. Journal of the Electrochemical Society, 2012, 159, A2010-A2015.	2.9	8
132	Carbon Gasification from a Molten Carbonate Eutectic. Energy Technology, 2019, 7, 1900602.	3.8	8
133	Passivation by pyridine-induced Pbl ₂ in methylammonium lead iodide perovskites. RSC Advances, 2020, 10, 23829-23833.	3.6	8
134	Combined step potential electrochemical spectroscopy and electrochemical impedance spectroscopy analysis of the glassy carbon electrode in an aqueous electrolyte. Electrochimica Acta, 2021, 396, 139220.	5.2	8
135	Mesoscale Morphological Control of Electrodeposited Manganese Dioxide Films. Electrochimica Acta, 2015, 170, 343-352.	5.2	7
136	Investigation of novel hydroxyapatite-doped CaO material for calcination-carbonation thermochemical energy storage. AIP Conference Proceedings, 2018, , .	0.4	7
137	One-dimensional Sn(<scp>iv</scp>) hydroxide nanofluid toward nonlinear optical switching. Materials Horizons, 2020, 7, 1150-1159.	12.2	7
138	Chronoamperometric characterization of manganese dioxide discharge in alkaline electrolytes. Journal of Electroanalytical Chemistry, 2008, 621, 83-90.	3.8	6
139	Tuning the electrochemistry of homoleptic cobalt 4,4′-disubstituted-2,2′-bipyridine redox mediators. Electrochimica Acta, 2013, 108, 690-697.	5.2	6
140	Preparation and Binding Evaluation of Histamine-Imprinted Microspheres via Conventional Thermal and RAFT-Mediated Free-Radical Polymerization. ACS Omega, 2016, 1, 518-531.	3.5	6
141	Electroanalytical characterization of electrochemical capacitor systems. Electrochimica Acta, 2019, 327, 135010.	5.2	6
142	Characterization of carbonate derived carbons through electrochemical impedance spectroscopy. Electrochimica Acta, 2020, 338, 135847.	5.2	6
143	New insight into ion dynamics in nanoporous carbon materials: An application of the step potential electrochemical spectroscopy (SPECS) technique and electrochemical dilatometry. Electrochimica Acta, 2021, 377, 138115.	5.2	6
144	Fe-Substituted Sodium $\hat{1}^2\hat{a}\in 3$ -Al ₂ O ₃ as a High-Rate Na-Ion Electrode. Chemistry of Materials, 2021, 33, 6136-6145.	6.7	6

#	Article	IF	Citations
145	Mn-modified polypyrrole thin films for supercapacitor electrodes. Synthetic Metals, 2014, 196, 8-19.	3.9	5
146	Gas Atmosphere Effects Over the Anode Compartment of a Tubular Direct Carbon Fuel Cell Module. Energy & Samp; Fuels, 2019, 33, 7901-7907.	5.1	5
147	Physical characteristics of capacitive carbons derived from the electrolytic reduction of alkali metal carbonate molten salts. RSC Advances, 2019, 9, 36771-36787.	3.6	5
148	Electrochemical Characterization of Proton Diffusion during Discharge and Cycling of \hat{l}^3 -MnO2. Journal of the Electrochemical Society, 2013, 160, A2070-A2077.	2.9	4
149	Mechanistic and structural investigation of LixMnO2 cathodes during cycling in Li-ion batteries. Electrochimica Acta, 2014, 137, 736-743.	5.2	4
150	Oscillatory Current Behavior in Energy Storage Electrode Materials. Journal of the Electrochemical Society, 2019, 166, A3620-A3630.	2.9	4
151	In Situ Investigation of the Electrodeposition Mechanism of Manganese Dioxide from a Citrate Electrolyte: The Effect of Intermediate Stabilization on Material Morphology. Journal of the Electrochemical Society, 2020, 167, 040520.	2.9	4
152	Mechanistic Insights of Pore Contributions in Carbon Supercapacitors by Modified Step Potential Electrochemical Spectroscopy. Journal of the Electrochemical Society, 2021, 168, 060530.	2.9	4
153	Thermodynamic and kinetic examination of the glassy carbon electrode in neutral aqueous electrolytes. Journal of Power Sources Advances, 2021, 10, 100062.	5.1	4
154	Capacitive Charge Storage at the Glassy Carbon Electrode: Comparison Between Aqueous and Non-Aqueous Electrolytes. Journal of the Electrochemical Society, 2021, 168, 100508.	2.9	4
155	Electrode Additives and the Rechargeability of the Alkaline Manganese Dioxide Cathode. Journal of the Electrochemical Society, 2014, 161, A403-A409.	2.9	3
156	The Initial Study of Polyaniline with Manganese Oxides for Electrochemical Capacitors. Procedia Chemistry, 2015, 16, 540-547.	0.7	3
157	In-Situ Investigation of the Electrodeposition of Manganese Dioxide Using Small Angle X-Ray Scattering. Journal of the Electrochemical Society, 2015, 162, A1809-A1815.	2.9	3
158	A synchrotron X-ray powder diffraction and step potential electrochemical spectroscopy study on the change in manganese dioxide capacitive behaviour during cycling. Electrochimica Acta, 2018, 260, 630-639.	5.2	3
159	Thermal and electrochemical impact of kaolin on a direct carbon fuel cell. Fuel, 2021, 291, 120215.	6.4	3
160	Preparation and Electrochemical Performance of Li _x MnO ₂ Materials by a Reduction and Lithiation Method. Journal of the Electrochemical Society, 2013, 160, A1358-A1363.	2.9	2
161	Redox Mechanism Contributions to the Behaviour of Electrochemical Capacitor Materials. Journal of the Electrochemical Society, 2021, 168, 050503.	2.9	2
162	Electrochemical characterization of the interaction between ammonium nitrate and reactive ground. Electrochimica Acta, 2019, 328, 135080.	5.2	1

SCOTT W DONNE

#	Article	IF	CITATIONS
163	Silicate Formation in a Ternary Alkali Metal Carbonate Melt. Energy & 2019, 33, 12008-12015.	5.1	O
164	Communicationâ€"Demonstrating the Role of Mass Transport in Double Layer Formation. Journal of the Electrochemical Society, 2022, 169, 020578.	2.9	0