Masakazu Mukaida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2102583/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermoelectrochemical Cells Based on Ferricyanide/Ferrocyanide/Guanidinium: Application and Challenges. ACS Applied Materials & Interfaces, 2022, , .	8.0	7
2	Thickness optimization of the output power and effective thermoelectric figure of merit of thin thermoelectric generator. Japanese Journal of Applied Physics, 2022, 61, 080903.	1.5	0
3	High-rate supercapacitor using magnetically aligned graphene. Journal of Power Sources, 2021, 482, 228995.	7.8	34
4	Thermoelectric materials-based on organic semiconductors. , 2021, , 333-345.		1
5	Control of anisotropic conduction of carbon nanotube sheets and their use as planar-type thermoelectric conversion materials. Science and Technology of Advanced Materials, 2021, 22, 272-279.	6.1	5
6	Anomalous n-type conversion of thermoelectric polarity in ionic hydrogels using PEDOT:PSS electrodes. Journal of Materials Chemistry C, 2021, 9, 15813-15819.	5.5	7
7	Extracting carrier mobility using a photoinduced charge transfer reaction: From conducting polymers to nanocarbon materials. Organic Electronics, 2020, 78, 105615.	2.6	11
8	Poly(3,4â€Ethylene Dioxythiophene)/Poly(Styrene Sulfonate) Electrodes in Electrochemical Cells for Harvesting Waste Heat. Energy Technology, 2020, 8, 1900998.	3.8	8
9	Stable organic thermoelectric devices for self-powered sensor applications. Journal of Materials Chemistry A, 2020, 8, 22544-22556.	10.3	22
10	Water-processable n-type doping of carbon nanotubes via charge transfer with imidazolium chloride salt. Chemical Physics Letters, 2020, 755, 137801.	2.6	13
11	Outstanding Electrode-Dependent Seebeck Coefficients in Ionic Hydrogels for Thermally Chargeable Supercapacitor near Room Temperature. ACS Applied Materials & Interfaces, 2020, 12, 43674-43683.	8.0	39
12	Poly(3,4â€Ethylene Dioxythiophene)/Poly(Styrene Sulfonate) Electrodes in Electrochemical Cells for Harvesting Waste Heat. Energy Technology, 2020, 8, 2070053.	3.8	3
13	Enhanced Power Output in Polymer Thermoelectric Devices through Thermal and Electrical Impedance Matching. ACS Applied Energy Materials, 2019, 2, 6973-6978.	5.1	14
14	Conducting polymer electrodes in electrochemical cells for waste heat harvesting. , 2019, , .		0
15	Humidity control in a closed system utilizing conducting polymers. RSC Advances, 2018, 8, 12540-12546.	3.6	8
16	Reduction of specific contact resistance between the conducting polymer PEDOT:PSS and a metal electrode by addition of a second solvent during film formation and a post-surface treatment. Synthetic Metals, 2018, 246, 289-296.	3.9	14
17	Reversible Protonic Doping in Poly(3,4-Ethylenedioxythiophene). Polymers, 2018, 10, 1065.	4.5	22
18	Extracting Carrier Mobility in Conducting Polymers Using a Photoinduced Charge Transfer Reaction. Journal of Physical Chemistry C, 2018, 122, 15922-15928.	3.1	7

Masakazu Mukaida

#	Article	IF	CITATIONS
19	Thermoelectric power generation using nonwoven fabric module impregnated with conducting polymer PEDOT:PSS. Synthetic Metals, 2017, 225, 41-48.	3.9	58
20	Electrical transport and thermoelectric properties of boron carbide nanowires. Nanotechnology, 2017, 28, 145404.	2.6	9
21	Polymer thermoelectric devices prepared by thermal lamination. Synthetic Metals, 2017, 225, 64-69.	3.9	14
22	Electrical conduction and thermoelectric properties of tetrathiafulvalene-tetracyanoquinodimethane cast films prepared with N,N-dimethylacetamide. Synthetic Metals, 2017, 230, 12-17.	3.9	11
23	Measurement of in-plane thermal conductivity in polymer films. AIP Advances, 2016, 6, .	1.3	45
24	An accurate method to determine the through-plane electrical conductivity and to study transport properties in film samples. Organic Electronics, 2016, 38, 264-270.	2.6	10
25	Formation of accurate 1-nm gaps using the electromigration method during metal deposition. Applied Physics Express, 2016, 9, 035201.	2.4	4
26	Photoinduced Dedoping of Conducting Polymers: An Approach to Precise Control of the Carrier Concentration and Understanding Transport Properties. ACS Applied Materials & Interfaces, 2016, 8, 2054-2060.	8.0	35
27	Synthesis and thermopower of poly(3-methoxythiophene-2,5-diyl-co-3,4-ethylenedioxythiophene-2,5-diyl)/tosylate. Polymer, 2015, 66, 38-42.	3.8	8
28	Recent Progress on PEDOT-Based Thermoelectric Materials. Materials, 2015, 8, 732-750.	2.9	194
29	Polymer thermoelectric modules screen-printed on paper. RSC Advances, 2014, 4, 28802-28806.	3.6	143
30	Experimental Studies on the Anisotropic Thermoelectric Properties of Conducting Polymer Films. ACS Macro Letters, 2014, 3, 948-952.	4.8	118
31	Thermoelectric power enhancement of PEDOT:PSS in high-humidity conditions. Applied Physics Express, 2014, 7, 031601.	2.4	78
32	Self-Aligned Formation of Sub 1 nm Gaps Utilizing Electromigration during Metal Deposition. ACS Applied Materials & Interfaces, 2013, 5, 12869-12875.	8.0	23
33	Morphological Change and Mobility Enhancement in PEDOT:PSS by Adding Coâ€solvents. Advanced Materials, 2013, 25, 2831-2836.	21.0	380
34	Hydrogen diffusion coefficient and mobility in palladium as a function of equilibrium pressure evaluated by permeation measurement. Journal of Membrane Science, 2012, 421-422, 355-360.	8.2	52
35	Application of Extended Permeability to a Thick Palladium Membrane. Advanced Materials Research, 2010, 117, 81-85.	0.3	11
36	Preparation for defect-free self-supported Pd membranes by an electroless plating method. Journal of Membrane Science, 2010, 365, 378-381.	8.2	12

#	Article	IF	CITATIONS
37	Thermal stability, glass-forming ability and hydrogen permeability of amorphous Ni64Zr36â^'XMX (M=Ti,) Tj ETQq1	1,0.7843 7.9	14 rgBT /〇
38	Pressure-Dependent Hydrogen Permeability Extended for Metal Membranes Not Obeying the Square-Root Law. Journal of Physical Chemistry B, 2009, 113, 9795-9801.	2.6	51
39	Hydrogen separation from dry gas mixtures using a membrane module consisting of palladium-coated amorphous-alloy. Desalination, 2008, 234, 293-299.	8.2	10
40	Hydrogen solution properties in a series of amorphous Zr–Hf–Ni alloys at elevated temperatures. Journal of Alloys and Compounds, 2008, 458, 307-312.	5.5	14
41	Seebeck coefficients of iron group elements borides. Intermetallics, 2004, 12, 55-58.	3.9	3
42	Electronic structures of semiconducting alkaline-earth metal silicides. Journal of Alloys and Compounds, 2003, 358, 257-263.	5.5	109
43	Band-calculation of the electronic densities of states and the total energies of boron–silicon system. Journal of Alloys and Compounds, 2002, 347, 244-251.	5.5	24
44	Theoretical V–I characteristics of the solid-oxide thermocell using the oxide ion and electronic mixed conductors. Solid State Ionics, 2002, 154-155, 101-107.	2.7	2
45	Calculation of the density of states of transition metal monosilicides by a first-principle pseudopotential method using plane-wave basis. Intermetallics, 2001, 9, 261-268.	3.9	33
46	Screening of the possible boron-based n-type thermoelectric conversion materials on the basis of the calculated densities of states of metal borides and doped Î ² -boron. Intermetallics, 2001, 9, 721-734.	3.9	40
47	Thermoelectric power of titanate and ferrite with the cubic perovskite structure. Solid State Ionics, 2001, 144, 315-320.	2.7	7
48	Calculation of electronic energy and density of state of iron-disilicides using a total-energy pseudopotential method, CASTEP. Thin Solid Films, 2001, 381, 176-182.	1.8	42
49	Preparation of Î ² -FeSi2 films by chemical vapor deposition. Thin Solid Films, 2001, 381, 214-218.	1.8	11
50	Thermoelectric properties of Ru- or Ge-doped β-FeSi2 films prepared by electron beam deposition. Thin Solid Films, 2001, 381, 296-302.	1.8	13
51	Comparison of density of states of transition metal disilicides and their related compounds systematically calculated by a first-principle pseudopotential method using plane-wave basis. Intermetallics, 2000, 8, 381-390.	3.9	49
52	Preparation of Silicon Oxide Films by CVD Using Fluorotriethoxysilane. Journal of the Ceramic Society of Japan, 1997, 105, 433-435.	1.3	1
53	Formation energies of two-dimensional nuclei randomly-generated on (001), (110), and (111) planes of a face-centered-cubic crystal. Thin Solid Films, 1997, 300, 305-313.	1.8	18

Deposits obtained by photolysis of hexamethyldisilane by ArF excimer laser (SiC thin film preparation) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 1.8

#	Article	IF	CITATIONS
55	Electrostatic Potential and Temperature Distribution in Case of a Series and a Parallel Configuration of Two Thermoelectric Conversion Phases. Journal of the Ceramic Society of Japan, 1996, 104, 361-370.	1.3	1
56	SiC thin film preparation by ArF excimer laser chemical vapor deposition Part 1: Rate of photolysis of alkylsilanes by ArF excimer laser and their decomposition products. Thin Solid Films, 1996, 274, 70-75.	1.8	9
57	Composition dependence of morphology, structure, and thermoelectric properties of FeSi2 films prepared by sputtering deposition. Journal of Materials Research, 1996, 11, 2062-2070.	2.6	11
58	Recovery of stoichiometry of Ta2O5 prepared by KrF excimer laser CVD from tantalum methoxide using microwave discharge of oxygen gas. Journal of Materials Science, 1995, 30, 4603-4608.	3.7	6
59	Stoichiometry of tantalum oxide films prepared by KrF excimer laser-induced chemical vapor deposition. Thin Solid Films, 1995, 261, 76-82.	1.8	41
60	Densification of Ta2O5 film prepared by KrF excimer laser CVD. Thin Solid Films, 1993, 232, 180-184.	1.8	18
61	Morphology and structure of tantalum oxide deposit prepared by KrF excimer laser CVD. Journal of Materials Science, 1993, 28, 5363-5368.	3.7	15
62	Effect of Operating Conditions of KrF Excimer Laser on Crystallinity of Deposits in LCVD from Mo(CO) ₆ . Electrochemistry, 1992, 60, 1009-1011.	0.3	2
63	Preparation of Fe-Si thin films by chemical vapor deposition. , 0, , .		Ο
64	Electronic energy of Fe-Si alloys calculated by a density-functional method using a pseudopotential approach. , 0, , .		0
65	Electronic densities of states of Silicon-Boron system. , 0, , .		0
66	Influence of structures and compositions on thermoelectric properties of silicon borides. , 0, , .		0
67	Electronic structures of semiconducting alkaline-earth metal silicides. , 0, , .		0
68	Effects of metallic elements on thermoelectric properties of silicon borides. , 0, , .		0