Glenn Hefter

List of Publications by Citations

Source: https://exaly.com/author-pdf/2101959/glenn-hefter-publications-by-citations.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81 7,825 204 47 h-index g-index citations papers 6.09 8,405 239 4.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
204	Ion pairing. <i>Chemical Reviews</i> , 2006 , 106, 4585-621	68.1	799
203	Gibbs energies of transfer of cations from water to mixed aqueous organic solvents. <i>Chemical Reviews</i> , 2000 , 100, 819-52	68.1	276
202	Dynamics of imidazolium ionic liquids from a combined dielectric relaxation and optical Kerr effect study: evidence for mesoscopic aggregation. <i>Journal of the American Chemical Society</i> , 2009 , 131, 11140	0 ^{-16.4}	232
201	Complexity in BimpleŒlectrolyte Solutions: Ion Pairing in MgSO4(aq). <i>Journal of Physical Chemistry B</i> , 2004 , 108, 2365-2375	3.4	225
200	Interactions and dynamics in electrolyte solutions by dielectric spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 8984-99	3.6	219
199	Standard partial molar volumes of electrolytes and ions in nonaqueous solvents. <i>Chemical Reviews</i> , 2004 , 104, 3405-52	68.1	214
198	Temperature dependence of the dielectric properties and dynamics of ionic liquids. <i>ChemPhysChem</i> , 2009 , 10, 723-33	3.2	175
197	Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: The Hg2+IClDOHDCO32DSO42Dand PO43Daqueous systems (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2005 , 77, 739-800	2.1	166
196	Raman spectroscopic investigation of speciation in MgSO4(aq). <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 5253	3.6	149
195	Interactions and dynamics in ionic liquids. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 4854-8	3.4	148
194	Chemical speciation of environmentally significant metals with inorganic ligands Part 2: The Cu2+-OH-, Cl-, CO32-, SO42-, and PO43- systems (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2007 , 79, 895-950	2.1	138
193	Is there an anionic Hofmeister effect on water dynamics? Dielectric spectroscopy of aqueous solutions of NaBr, NaI, NaNO3, NaClO4, and NaSCN. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 8675-83	2.8	133
192	Ion-Pair and Solvent Relaxation Processes in Aqueous Na2SO4 Solutions. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 1185-1192	3.4	129
191	Enthalpies and entropies of transfer of electrolytes and ions from water to mixed aqueous organic solvents. <i>Chemical Reviews</i> , 2002 , 102, 2773-836	68.1	128
190	Complexation of iron(III) and iron(II) by citrate. Implications for iron speciation in blood plasma. Journal of Inorganic Biochemistry, 2000 , 78, 175-84	4.2	127
189	Dielectric Spectroscopy of Aqueous Solutions of KCl and CsCl. <i>Journal of Physical Chemistry A</i> , 2003 , 107, 4025-4031	2.8	110
188	Ion association and hydration in aqueous solutions of LiCl and Li2SO4 by dielectric spectroscopy. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 9010-7	3.4	109

(2009-2009)

Chemical speciation of environmentally significant metals with inorganic ligands. Part 3: The Pb2+ + OHICLICO32ISO42IJand PO43I systems (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2009 , 81, 2425-2476	2.1	108
How ideal are binary mixtures of room-temperature ionic liquids?. <i>Journal of Molecular Liquids</i> , 2010 , 153, 46-51	6	102
Synthesis and Physical Properties of Choline Carboxylate Ionic Liquids. <i>Journal of Chemical & Engineering Data</i> , 2012 , 57, 2191-2196	2.8	96
From ionic liquid to electrolyte solution: dynamics of 1-N-butyl-3-N-methylimidazolium tetrafluoroborate/dichloromethane mixtures. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 12913-9	3.4	87
Dielectric Relaxation of Dilute Aqueous NaOH, NaAl(OH)4, and NaB(OH)4. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 11186-11190	3.4	82
Glasslike behavior in aqueous electrolyte solutions. <i>Journal of Chemical Physics</i> , 2008 , 128, 161102	3.9	81
When spectroscopy fails: The measurement of ion pairing. <i>Pure and Applied Chemistry</i> , 2006 , 78, 1571-7	15 <u>8.6</u>	79
Association of ionic liquids in solution: a combined dielectric and conductivity study of [bmim][Cl] in water and in acetonitrile. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 17588-98	3.6	76
Broadband dielectric response of the ionic liquid N-methyl-N-ethylpyrrolidinium dicyanamide. <i>Chemical Communications</i> , 2006 , 1748-50	5.8	75
Viscosities and Densities of Highly Concentrated Aqueous MOH Solutions (M+ = Na+, K+, Li+, Cs+, (CH3)4N+) at 25.0 °C. <i>Journal of Chemical & Engineering Data</i> , 2000 , 45, 613-617	2.8	75
Carbonate removal from concentrated hydroxide solutions. <i>Analyst, The</i> , 2000 , 125, 955-958	5	65
Hydration of formate and acetate ions by dielectric relaxation spectroscopy. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 314-23	3.4	62
Chemical speciation of environmentally significant metals with inorganic ligands. Part 4: The Cd2+ + OHICLICO32ISO42Iand PO43Isystems (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2011 , 83, 1163-1214	2.1	62
Zinc electrowinning from acidic sulfate solutions: Part I: Effects of sodium lauryl sulfate. <i>Journal of Applied Electrochemistry</i> , 1997 , 27, 673-678	2.6	62
An investigation of the lead(II)-hydroxide system. <i>Inorganic Chemistry</i> , 2001 , 40, 3974-8	5.1	62
On the Pressure and Electric Field Dependencies of the Relative Permittivity of Liquids. <i>Journal of Solution Chemistry</i> , 1999 , 28, 575-592	1.8	61
Structure and dynamics of 1-N-alkyl-3-N-methylimidazolium tetrafluoroborate + acetonitrile mixtures. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 7509-21	3.4	60
Dipole correlations in the ionic liquid 1-N-ethyl-3-N-methylimidazolium ethylsulfate and its binary mixtures with dichloromethane. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 9527-37	3.4	60
	How ideal are binary mixtures of room-temperature ionic liquids?. Journal of Molecular Liquids, 2010, 153, 46-51 Synthesis and Physical Properties of Choline Carboxylate Ionic Liquids. Journal of Chemical & Description & Description of Chemical & Description & Description of Chemical & Description of Chemical & Description &	How ideal are binary mixtures of room-temperature ionic liquids?. Journal of Molecular Liquids, 2010, 153, 46-51 Synthesis and Physical Properties of Choline Carboxylate Ionic Liquids. Journal of Chemical Ramp; Engineering Data, 2012, 57, 2191-2196 From ionic liquid to electrolyte solution: dynamics of 1-N-bubyl-3-N-methylimidazolium tetrafluoroborate dichloromethane mixtures. Journal of Physical Chemistry B, 2008, 112, 12913-9 34 Dielectric Relaxation of Dilute Aqueous NaOH, NaAl(OH)4, and NaB(OH)4. Journal of Physical Chemistry B, 1999, 103, 11186-11190 Glasslike behavior in aqueous electrolyte solutions. Journal of Chemical Physics, 2008, 128, 161102 39 When spectroscopy fails: The measurement of ion pairing. Pure and Applied Chemistry, 2006, 78, 1571-1586 Association of ionic liquids in solution: a combined dielectric and conductivity study of [bmim][CI] in water and in acetonitrile. Physical Chemistry Chemical Physics, 2011, 13, 17588-98 Broadband dielectric response of the ionic liquid N-methyl-N-ethylpyrrolidinium dicyanamide. Chemical Communications, 2006, 1748-50 Viscosities and Densities of Highly Concentrated Aqueous MOH Solutions (M+ = Na+, K+, Li+, Cs+, (CH3)MN+) at 25.0 IC. Journal of Chemical Ramp; Engineering Data, 2000, 45, 613-617 Carbonate removal from concentrated hydroxide solutions. Analyst, The, 2000, 125, 955-958 5 Hydration of formate and acetate ions by dielectric relaxation spectroscopy. Journal of Physical Chemistry B, 2012, 116, 314-23 Chemical speciation of environmentally significant metals with inorganic ligands. Part 4: The Cd2++ OHDICUICO32055042[and PO438ystems (IUPAC Technical Report). Pure and Applied Chemistry, 2011, 83, 1163-1214 Zinc electrowinning from acidic sulfate solutions: Part I: Effects of sodium lauryl sulfate. Journal of Applied Electrochemistry, 1997, 27, 673-678 An investigation of the lead (II)-hydroxide system. Inorganic Chemistry, 2001, 40, 3974-8 5.1 On the Pressure and Electric Field Dependencies of the Relative Permittivity of Liquids.

169	Effects of nonionic surfactant C12E5 on the cooperative dynamics of water. <i>Langmuir</i> , 2006 , 22, 924-32	4	59
168	Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH–, Cl–, CO32–, SO42–, and PO43– systems (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2013 , 85, 2249-2311	2.1	56
167	Ultrasonic velocities, densities, viscosities, electrical conductivities, Raman spectra, and molecular dynamics simulations of aqueous solutions of Mg(OAc)2 and Mg(NO3)2: Hofmeister effects and ion pair formation. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 24108-20	3.4	56
166	Ion hydration and association in aqueous potassium phosphate solutions. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 5270-81	3.4	55
165	Development of a novel mathematical model using a group contribution method for prediction of ionic liquid toxicities. <i>Chemosphere</i> , 2011 , 85, 990-4	8.4	54
164	A critical review of methods for obtaining ionic volumes in solution. <i>Journal of Solution Chemistry</i> , 1997 , 26, 249-266	1.8	54
163	Hydration of tetraphenylphosphonium and tetraphenylborate ions by dielectric relaxation spectroscopy. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 5147-54	3.4	54
162	Organic Corrosion Inhibitors in Neutral Solutions; Part 1 Inhibition of Steel, Copper, and Aluminum by Straight Chain Carboxylates. <i>Corrosion</i> , 1997 , 53, 657-667	1.8	53
161	Structure and dynamics in protic ionic liquids: a combined optical Kerr-effect and dielectric relaxation spectroscopy study. <i>Faraday Discussions</i> , 2012 , 154, 145-53; discussion 189-220, 465-71	3.6	52
160	Temperature effects on ion association and hydration in MgSO4 by dielectric spectroscopy. <i>ChemPhysChem</i> , 2006 , 7, 2319-30	3.2	48
159	19F NMR study of the equilibria and dynamics of the Al3+/F- system. <i>Inorganic Chemistry</i> , 2000 , 39, 2530	D 57 1	48
158	Ionic partial molar volumes in non-aqueous solvents. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1994 , 90, 1899		47
157	JESS, a Joint Expert Speciation SystemIV: a large database of aqueous solution physicochemical properties with an automatic means of achieving thermodynamic consistency. <i>Talanta</i> , 2010 , 81, 142-8	6.2	46
156	Ion Association and Hydration in Aqueous Solutions of Nickel(II) and Cobalt(II) Sulfate. <i>Journal of Solution Chemistry</i> , 2005 , 34, 1045-1066	1.8	44
155	Iron chelators of the pyridoxal isonicotinoyl hydrazone class. III. Formation constants with calcium(II), magnesium(II) and zinc(II). <i>Biology of Metals</i> , 1989 , 2, 161-7		44
154	Synthesis and anti-microbial activity of hydroxylammonium ionic liquids. <i>Chemosphere</i> , 2011 , 84, 101-4	8.4	43
153	Are nanoscale ion aggregates present in aqueous solutions of guanidinium salts?. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 13617-27	3.4	43
152	Ultra-Broadband Dielectric and Optical Kerr-Effect Study of the Ionic Liquids Ethyl and Propylammonium Nitrate. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 8826-41	3.4	41

(1984-2006)

151	Ion association and hydration in aqueous solutions of copper(II) sulfate from 5 to 65 degrees C by dielectric spectroscopy. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 14961-70	3.4	40	
150	Aqueous electrolyte solution modelling: Some limitations of the Pitzer equations. <i>Applied Geochemistry</i> , 2015 , 55, 170-183	3.5	39	
149	Hydration and ion pairing in aqueous sodium oxalate solutions. <i>ChemPhysChem</i> , 2003 , 4, 373-8	3.2	39	
148	Dielectric spectroscopy of hydrogen bond dynamics and microheterogenity of water + dioxane mixtures. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 5946-55	3.4	38	
147	Heat Capacities of Concentrated Aqueous Solutions of Sodium Sulfate, Sodium Carbonate, and Sodium Hydroxide at 25 °C. <i>Journal of Chemical & Engineering Data</i> , 2002 , 47, 590-598	2.8	38	
146	A Hydrogen Electrode Study of Concentrated Alkaline Aluminate Solutions. <i>Australian Journal of Chemistry</i> , 1998 , 51, 445	1.2	38	
145	Zinc electrowinning from acidic sulphate solutions Part II: Effects of triethylbenzylammonium chloride. <i>Journal of Applied Electrochemistry</i> , 1998 , 28, 915-920	2.6	35	
144	Comprehensive Model of Synthetic Bayer Liquors. Part 1. Overview. <i>Industrial & Chemistry Research</i> , 2005 , 44, 5805-5814	3.9	34	
143	Cation Hydration and Ion Pairing in Aqueous Solutions of MgCl and CaCl. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 891-900	3.4	34	
142	A Generic and Updatable Pitzer Characterization of Aqueous Binary Electrolyte Solutions at 1 bar and 25 °C. <i>Journal of Chemical & Engineering Data</i> , 2011 , 56, 5066-5077	2.8	33	
141	Quantitative determination of an aluminate dimer in concentrated alkaline aluminate solutions by Raman spectroscopy. <i>Dalton Transactions</i> , 2006 , 368-75	4.3	33	
140	Rattling the cage: Micro- to mesoscopic structure in liquids as simple as argon and as complicated as water. <i>Journal of Molecular Liquids</i> , 2011 , 159, 2-8	6	32	
139	(27)Al NMR and Raman spectroscopic studies of alkaline aluminate solutions with extremely high caustic content - Does the octahedral species Al(OH)(6)(3-) exist in solution?. <i>Talanta</i> , 2006 , 70, 761-5	6.2	32	
138	Calculation of liquid junction potentials for equilibrium studies. <i>Analytical Chemistry</i> , 1982 , 54, 2518-252	2 4 .8	32	
137	Dielectric relaxation of aqueous Na2CO3 solutions. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 1933-1	9 3 8	31	
136	Ion association and hydration in 3:2 electrolyte solutions by dielectric spectroscopy: Aluminum sulfate. <i>Geochimica Et Cosmochimica Acta</i> , 2007 , 71, 5287-5300	5.5	30	
135	Cyanide thermodynamics 2. Stability constants of copper(I) cyanide complexes in aqueous acetonitrile mixtures. <i>Talanta</i> , 1996 , 43, 2045-51	6.2	30	
134	Acidity constant of hydrofluoric acid. <i>Journal of Solution Chemistry</i> , 1984 , 13, 457-470	1.8	30	

133	Complexation of copper(I) by thioamino acids. Implications for copper speciation in blood plasma. Journal of Inorganic Biochemistry, 1997 , 68, 225-31	4.2	29
132	Ion solvation in aqueousBrganic mixtures. <i>Pure and Applied Chemistry</i> , 2005 , 77, 605-617	2.1	28
131	Hydrophilic and hydrophobic hydration of sodium propanoate and sodium butanoate in aqueous solution. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 2142-52	3.4	26
130	The effects of 4-ethylpyridine and 2-cyanopyridine on zinc electrowinning from acidic sulfate solutions. <i>Journal of Applied Electrochemistry</i> , 1997 , 27, 738-744	2.6	26
129	High Frequency Dielectric Response of the Ionic Liquid N-Methyl-N-ethylpyrrolidinium Dicyanamide. <i>Australian Journal of Chemistry</i> , 2007 , 60, 6	1.2	25
128	Mononuclear cyano- and hydroxo-complexes of iron(III). <i>Inorganic Chemistry</i> , 2003 , 42, 5917-23	5.1	25
127	Viscosities and Densities of Concentrated Aqueous NaOH/NaAl(OH)4 Mixtures at 25 °C. Journal of Chemical & Chem	2.8	24
126	Raman, IR, and 27Al-MAS-NMR Spectroscopic Studies of Sodium (Hydroxy)Aluminates. <i>Applied Spectroscopy</i> , 1999 , 53, 415-422	3.1	24
125	Chemical speciation in concentrated alkaline aluminate solutions in sodium, potassium and caesium media. Interpretation of the unusual variations of the observed hydroxide activity. <i>Dalton Transactions</i> , 2006 , 1858-66	4.3	23
124	Comprehensive Model of Synthetic Bayer Liquors. Part 3. Sodium Aluminate Solutions and the Solubility of Gibbsite and Boehmite. <i>Monatshefte Fil Chemie</i> , 2006 , 137, 1139-1149	1.4	23
123	Dielectric Relaxation of Concentrated Alkaline Aluminate Solutions. <i>Journal of Physical Chemistry A</i> , 2002 , 106, 6527-6532	2.8	23
122	Fluoride solvation - the case of the missing ion. <i>Pure and Applied Chemistry</i> , 1991 , 63, 1749-1758	2.1	23
121	Formation constants of copper(I) complexes with cysteine, penicillamine and glutathione: implications for copper speciation in the human eye. <i>Dalton Transactions</i> , 2015 , 44, 20413-25	4.3	22
120	Relative Permittivity of Dimethylsulfoxide and N,N-Dimethylformamide at Temperatures from (278 to 328) K and Pressures from (0.1 to 5) MPa. <i>Journal of Chemical & Data, 2010</i> , 55, 2055	5- 2 865	22
119	Chemical Speciation of Hg(II) with Environmental Inorganic Ligands. <i>Australian Journal of Chemistry</i> , 2004 , 57, 993	1.2	22
118	Effects of hydration on the thermodynamic properties of aqueous ethylene glycol ether solutions. <i>Journal of Chemical Thermodynamics</i> , 2005 , 37, 513-522	2.9	22
117	Effects of 2-picoline on zinc electrowinning from acidic sulfate electrolyte. <i>Journal of Applied Electrochemistry</i> , 1996 , 26, 1245	2.6	22
116	A critical review of the thermodynamics of hydrogen cyanide and copper(I) Byanide complexes in aqueous solution. <i>Hydrometallurgy</i> , 2015 , 154, 78-87	4	21

115	Isopiestic Measurements on Aqueous Solutions of Heavy Metal Sulfates: MSO4 + H2O (M = Mn, Co, Ni, Cu, Zn). 1. T = 323.15 K. <i>Journal of Chemical & Engineering Data</i> , 2014 , 59, 97-102	2.8	21	
114	Synthesis, Characterization, Physical Properties, and Cytotoxicities of 1-(6-Hydroxyhexyl)-3-alkylimidazolium Chloride Ionic Liquids. <i>Journal of Chemical & Data</i> , 2011 , 56, 4188-4193	2.8	21	
113	Spectroscopic studies of the chemical speciation in concentrated alkaline aluminate solutions. Journal of the Chemical Society Dalton Transactions, 1998 , 3007-3012		21	
112	Ion Pairing and Solvent Relaxation Processes in Aqueous Solutions of Sodium Malonate and Sodium Succinate. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 13789-13795	3.4	21	
111	Viscosities of concentrated electrolyte solutions. <i>Journal of Molecular Liquids</i> , 2003 , 103-104, 261-273	6	21	
110	Association constants for the NaSO(4)(-) ion pair in concentrated cesium chloride solutions. <i>Talanta</i> , 1999 , 49, 25-30	6.2	21	
109	Ionic partial molar heat capacities in non-aqueous solvents. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 757		21	
108	Densities, Ultrasonic Velocities, Viscosities, and Electrical Conductivities of Aqueous Solutions of Mg(OAc)2 and Mg(NO3)2. <i>Journal of Chemical & Data</i> , 2006, 51, 1609-1616	2.8	19	
107	Raman Spectroscopic Study of Ion Pairing of Alkali Metal Ions with Carbonate and Sulfate in Aqueous Solutions. <i>Australian Journal of Chemistry</i> , 2000 , 53, 887	1.2	19	
106	The solvation of fluoride ions. I. Free energies for transfer from water to aqueous alcohol and acetonitrile mixtures. <i>Journal of Solution Chemistry</i> , 1988 , 17, 535-546	1.8	19	
105	Optimal optical design of thin-film photovoltaic devices. <i>Solar Energy Materials and Solar Cells</i> , 1997 , 49, 163-169	6.4	18	
104	Heat capacities of aqueous solutions of sodium hydroxide and water ionization up to 300 °C at 10 MPa. <i>Geochimica Et Cosmochimica Acta</i> , 2008 , 72, 3124-3138	5.5	18	
103	A general method for the determination of copper(I) equilibria in aqueous solution. <i>Journal of the Chemical Society Chemical Communications</i> , 1993 , 1704		18	
102	Apparent molar heat capacities and volumes of electrolytes and ions int-butanol-water mixtures. Journal of Solution Chemistry, 1989 , 18, 229-248	1.8	18	
101	Comprehensive Model of Synthetic Bayer Liquors. Part 2. Densities of Alkaline Aluminate Solutions to 90 °C. <i>Journal of Chemical & Engineering Data</i> , 2005 , 50, 1270-1276	2.8	17	
100	Apparent molar heat capacities and volumes of electrolytes and ions in acetonitrile-water mixtures. Journal of Solution Chemistry, 1990 , 19, 207-223	1.8	17	
99	Isobaric Heat Capacities of the Ionic Liquids [Cnmim][Tf2N] (n = 6, 8) from (323 to 573) K at 10 MPa. Journal of Chemical & Camp; Engineering Data, 2010, 55, 1808-1813	2.8	16	
98	Heat capacities of aqueous sodium hydroxide/aluminate mixtures and prediction of the solubility constant of boehmite up to 300 °C. <i>Geochimica Et Cosmochimica Acta</i> , 2010 , 74, 2368-2379	5.5	16	

97	Heat Capacities and Volumes of Aqueous Dicarboxylate Salt Solutions of Relevance to the Bayer Process. <i>Journal of Chemical & Engineering Data</i> , 2005 , 50, 2019-2025	2.8	16
96	Effect of charge on bond strength in hydrogenated amorphous silicon. <i>Journal of Computational Chemistry</i> , 1994 , 15, 644-652	3.5	16
95	Ion solvation in lithium battery electrolyte solutions. 1. Apparent molar volumes. <i>Journal of Solution Chemistry</i> , 1991 , 20, 1059-1078	1.8	16
94	Densities and Molar Volumes of Aqueous Solutions of LiClO4 at Temperatures from 293 K to 343 K. <i>Journal of Chemical & Data, 2016, 61, 1388-1394</i>	2.8	15
93	Predicting Cyanide Consumption in Gold Leaching: A Kinetic and Thermodynamic Modeling Approach. <i>Minerals (Basel, Switzerland)</i> , 2018 , 8, 110	2.4	15
92	Chemical speciation in concentrated aqueous solutions of CuCl2 using thin-film UVIIisible spectroscopy combined with DFT calculations. <i>Journal of Molecular Liquids</i> , 2014 , 198, 200-203	6	15
91	Molar Volumes and Heat Capacities of Electrolytes and Ions in Nonaqueous Solvents: 1. Formamide. <i>Journal of Solution Chemistry</i> , 1998 , 27, 1067-1096	1.8	15
90	Dielectric Spectroscopy of Cesium Fluoride in Methanol. <i>Journal of Solution Chemistry</i> , 2002 , 31, 521-53	5 1.8	15
89	Hydration and ion association of La and Eu salts in aqueous solution. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 8812-8821	3.6	14
88	Solubility of CuO(s) in highly alkaline solutions. <i>Hydrometallurgy</i> , 2014 , 147-148, 68-72	4	14
87	Potentiometric Investigation of the Weak Association of Sodium and Carbonate Ions at 25°C. Journal of Solution Chemistry, 1998 , 27, 865-877	1.8	14
86	IUPAC-NIST Solubility Data Series. 81. Hydrocarbons with Water and SeawaterRevised and Updated Part 12. C5f226 Hydrocarbons with Seawater. <i>Journal of Physical and Chemical Reference Data</i> , 2006 , 35, 785-838	4.3	14
85	Conductivities of KF and CsF in methanol at 25°C. Journal of Solution Chemistry, 1996, 25, 541-553	1.8	14
84	Mobilities of cation-macrocyclic ligand complexes. <i>Pure and Applied Chemistry</i> , 1993 , 65, 1533-1540	2.1	14
83	Densities and Apparent Molar Volumes of Aqueous Solutions of Li2SO4 and LiCF3SO3 at Temperatures from 293 to 343 K. <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 3618-3626	2.8	13
82	Dielectric relaxation study of the ion solvation and association of NaCF3SO3, Mg(CF3SO3)2, and Ba(ClO4)2 in N,N-dimethylformamide. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 2234-42	3.4	13
81	Molar volumes and heat capacities of electrolytes and ions in N,N-dimethylformamide. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 12366-73	3.4	13

(2000-1999)

79	Improved apparatus and procedures for the measurement of solubility of rapidly equilibrating solid[]quid systems to 90 °C. <i>Review of Scientific Instruments</i> , 1999 , 70, 1481-1485	1.7	13
78	Use of lithium perchlorate media in the study of protolytic equilibria. <i>Journal of Solution Chemistry</i> , 1984 , 13, 179-190	1.8	13
77	Quantitative analysis in alkaline solutions by Raman spectroscopy. <i>Analytical Methods</i> , 2009 , 1, 132-138	3.2	12
76	Improved apparatus and procedures for isopiestic studies at elevated temperatures. <i>Review of Scientific Instruments</i> , 1997 , 68, 2558-2567	1.7	12
75	Heat Capacities of Concentrated Aqueous Alkaline Aluminate Solutions at 25 °C. <i>Journal of Chemical & Chemical</i>	2.8	12
74	Relationships Among Solvent Softness Scales. <i>Journal of Solution Chemistry</i> , 2000 , 29, 201-216	1.8	12
73	Biospeciation, by potentiometry and computer simulation, of Sm-EDTMP, a bone tumor palliative agent. <i>BioMetals</i> , 1996 , 9, 351-61	3.4	12
72	Proton-fluoride equilibria in concentrated sodium perchlorate media. <i>Journal of Solution Chemistry</i> , 1982 , 11, 45-53	1.8	12
71	Dissolution of Cr2O3(s) and the Behavior of Chromium in Concentrated NaOH Solutions. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 16537-16543	3.9	11
70	Some highs and lows (and in-betweens) of solubility measurements of solid electrolytes. <i>Pure and Applied Chemistry</i> , 2013 , 85, 2077-2087	2.1	11
69	Zdanovskii Rule and Isopiestic Measurements Applied to Synthetic Bayer Liquors. <i>Journal of Solution Chemistry</i> , 2007 , 36, 1619-1634	1.8	11
68	Effects of annealing on infrared and thermal-effusion spectra of sputtered a-Si:H alloys. <i>Journal of Applied Physics</i> , 1992 , 71, 403-409	2.5	11
67	Direct Determination of Cyanide in Seawater. <i>International Journal of Environmental Analytical Chemistry</i> , 1984 , 16, 315-323	1.8	11
66	Chemical Speciation of Environmentally Significant Metals: An IUPAC contribution to reliable and rigorous computer modelling. <i>Chemistry International</i> , 2015 , 37,	1.6	10
65	Molar Volumes and Heat Capacities of Aqueous Solutions of Short-Chain Aliphatic Sodium Carboxylates at 25 °C. <i>Journal of Chemical & Engineering Data</i> , 2011 , 56, 5081-5087	2.8	10
64	The ionic product of water in concentrated tetramethylammonium chloride solutions. <i>Talanta</i> , 1997 , 44, 617-20	6.2	10
63	Volumetric behavior of aqueous NaF and KF solutions up to 350L and 30 MPa. <i>Journal of Solution Chemistry</i> , 1997 , 26, 847-875	1.8	10
62	Thermodynamics of Protonation and Sodium Binding of Sulfate in Concentrated NaCl and CsCl Solutions Studied by Raman Spectroscopy. <i>Australian Journal of Chemistry</i> , 2000 , 53, 363	1.2	10

61	205T1-NMR and UV-Visible spectroscopic determination of the formation constants of aqueous thallium(I) hydroxo-complexes. <i>Journal of Solution Chemistry</i> , 1997 , 26, 419-431	1.8	9
60	Densities of NaOH(aq) at Temperatures from (323 to 573) K and 10 MPa Pressure. <i>Journal of Chemical & Data</i> , 2007, 52, 2237-2244	2.8	9
59	Potentiometric Study of the Association of Magnesium and Sulfate Ions at 25th in High Ionic Strength Media. <i>Journal of Solution Chemistry</i> , 2001 , 30, 19-29	1.8	9
58	Cyanide thermodynamics. Part 4. E nthalpies and entropies of cyanide complexation of Cul, AgI, ZnII and CdII. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 641-644		9
57	Densities of Concentrated Alkaline Aluminate Solutions at Temperatures from (323 to 573) K and 10 MPa Pressure. <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 1173-1178	2.8	8
56	Fluoride standards in determination of equilibrium constants of metal ion-fluoride complexes. <i>Analytical Chemistry,</i> 1984 , 56, 749-752	7.8	8
55	Investigation of complexation and solubility equilibria in the copper(I)/cyanide system at 25 °C. <i>Hydrometallurgy</i> , 2016 , 164, 202-207	4	8
54	Volatile Products from the Degradation of Organics in a Synthetic Bayer Liquor. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 3613-3617	3.9	7
53	Thermodynamics of impurities in hydrometallurgical processes. <i>Pure and Applied Chemistry</i> , 2011 , 83, 1075-1084	2.1	7
52	The solubility of solids in near-critical fluids. VI. CHI3in CO2revisited. <i>Journal of Chemical Thermodynamics</i> , 2001 , 33, 1309-1324	2.9	7
51	Application of the tetraphenylarsonium tetraphenylborate (TATB) assumption to the hydration entropies of ions. <i>Journal of Chemical Thermodynamics</i> , 2000 , 32, 639-649	2.9	7
50	Dielectric relaxation spectroscopy: an old-but-new technique for the investigation of electrolyte solutions. <i>Pure and Applied Chemistry</i> , 2020 , 92, 1595-1609	2.1	7
49	Potentiometric Investigation of the Weak Association of Sodium and Oxalate Ions in Aqueous Solutions at 25°C. <i>Australian Journal of Chemistry</i> , 2005 , 58, 213	1.2	7
48	Solubility of Sodium Oxalate in Concentrated Electrolyte Solutions. <i>Journal of Chemical & Engineering Data</i> , 2018 , 63, 542-552	2.8	6
47	Heat Capacities of Aqueous Solutions of Lithium Sulfate, Lithium Perchlorate, and Lithium Trifluoromethanesulfonate at 298.15 K. <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 2149-21	5 4 .8	6
46	Gibbs Energies of Transfer of Fluoride Salts from Water to Aqueous Alcohol Mixtures. <i>Monatshefte Fil Chemie</i> , 2003 , 134, 669-677	1.4	6
45	Simulation of the infrared spectra of amorphous silicon alloys. <i>Journal of Computational Chemistry</i> , 1996 , 17, 306-312	3.5	6
44	Conductivities of 1:1 salts in 2-cyanopyridine. <i>Journal of Solution Chemistry</i> , 1994 , 23, 579-593	1.8	6

43	Systematic Variations of Ion Hydration in Aqueous Alkali Metal Fluoride Solutions. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 10868-10876	3.4	6
42	Isobaric heat capacities of a methane (1) + propane (2) mixture by differential scanning calorimetry at near-critical and supercritical conditions. <i>Fuel</i> , 2021 , 289, 119840	7.1	6
41	Molar Volumes and Heat Capacities of Aqueous Solutions of Potassium Hydroxide and for Water Ionization up to 573 K at 10 MPa. <i>Journal of Chemical & Engineering Data</i> , 2017 , 62, 2959-2972	2.8	5
40	Nature of Monomeric Molybdenum(VI) Cations in Acid Solutions Using Theoretical Calculations and Raman Spectroscopy. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 3304-3311	3.4	5
39	Protonation and sodium ion-pairing of the sulfite ion in concentrated aqueous electrolyte solutions. <i>Journal of Solution Chemistry</i> , 1997 , 26, 957-972	1.8	5
38	Comment on "Dynamic ion association in aqueous solutions of sulfate" [J. Chem. Phys. 123, 034508 (2005)]. <i>Journal of Chemical Physics</i> , 2006 , 124, 247101; author reply 247102	3.9	5
37	Noble gas ion effects on the XPS valence band spectra of silicon. <i>Applied Surface Science</i> , 2004 , 222, 13-	16 7	5
36	Isobaric heat capacity measurements of natural gas model mixtures (methane + n-heptane) and (propane + n-heptane) by differential scanning calorimetry at temperatures from 313 K to 422 K and pressures up to 31 MPa. <i>Fuel</i> , 2021 , 296, 120668	7.1	5
35	Remarks on the Evaluation of Thermodynamic Data for Sulfate Ion Protonation. <i>Journal of Solution Chemistry</i> , 2019 , 48, 1657-1670	1.8	4
34	Solubility and related properties in hydrometallurgy. Pure and Applied Chemistry, 2009, 81, 1537-1545	2.1	4
33	Potentiometric and computer studies of yttrium-EDTMP. <i>Inorganica Chimica Acta</i> , 1998 , 275-276, 37-42	2.7	4
32	The ionic product of water in highly concentrated sodium perchlorate solutions. <i>Talanta</i> , 1998 , 45, 931-	46.2	4
31	Cyanide Complexes of zinc(II) and Cadmium(II) in 3 M NaCl Medium. <i>Journal of Coordination Chemistry</i> , 1990 , 22, 7-19	1.6	4
30	Densities and Apparent Molar Volumes of Aqueous Solutions of Zinc Sulfate at Temperatures from 293 to 373 K and 0.1 MPa Pressure. <i>Journal of Chemical & Engineering Data</i> , 2021 , 66, 38-44	2.8	4
29	Densities and Apparent Molar Volumes of Aqueous Solutions of Sodium and Potassium Triflates up to High Concentrations at Temperatures 293.15B43.15 K. <i>Journal of Chemical & Data</i> , 2021, 66, 1802-1812	2.8	4
28	Molar Volumes and Heat Capacities of Aqueous Solutions of Mg(ClO4)2. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65, 3735-3743	2.8	3
27	Heat Capacities of Aqueous Solutions of K4Fe(CN)6, K3Fe(CN)6, K3Co(CN)6, K2Ni(CN)4, and KAg(CN)2 at 298.15 K. <i>Journal of Chemical & Engineering Data</i> , 2018 , 63, 1773-1779	2.8	3
26	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents. <i>Journal of Chemical Thermodynamics</i> , 2018 , 125, 250-2	256	3

25	A Potentiometric Study of the Association of Copper(II) and Sulfate Ions in Aqueous Solution at 25 °C. <i>Journal of Solution Chemistry</i> , 2014 , 43, 885-892	1.8	3
24	Chapter 15:Solubility of Solids in Bayer Liquors 2007 , 236-248		3
23	Ionization of Water in Concentrated Potassium Halide Media. <i>Australian Journal of Chemistry</i> , 2000 , 53, 369	1.2	3
22	Volumes and Heat Capacities of Cobalt(II), Nickel(II), and Copper(II) Sulfates in Aqueous Solution. Journal of Chemical & Data, 2020, 65, 4575-4581	2.8	3
21	A spectroscopic study of solvent effects on the formation of Cu(ii)-chloride complexes in aqueous solution. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 6807-6814	3.6	3
20	Thermodynamic Parameters Including Acid Dissociation Constants for Bromochlorophenols (BCPs). Journal of Chemical & Dissociation Constants for Bromochlorophenols (BCPs).	2.8	2
19	Chemical Speciation in Ionic Liquids and their Mixtures with Polar Solvents Using Dielectric Spectroscopy. <i>ACS Symposium Series</i> , 2010 , 61-74	0.4	2
18	Spectroscopic Study of the Behavior of Mo(VI) and W(VI) Polyanions in Sulfuric-Phosphoric Acid Mixtures. <i>Inorganic Chemistry</i> , 2021 , 60, 17565-17578	5.1	2
17	A Volumetric Pitzer Model for Aqueous Solutions of Zinc Sulfate up to Near-Saturation Concentrations at Temperatures from 293.15 to 393.15 K and Pressures up to 10 MPa. <i>Journal of Chemical & Data</i> , 2021, 66, 58-64	2.8	2
16	Chemical speciation effects on the volumetric properties of aqueous sulfuric acid solutions. <i>Journal of Chemical Thermodynamics</i> , 2021 , 158, 106408	2.9	2
15	A simple gravimetric method for the determination of perchlorate. <i>Monatshefte Fil Chemie</i> , 2018 , 149, 323-326	1.4	2
14	Apparent molar volumes of aqueous solutions of sodium acetate and sodium benzoate at temperatures from 323 K to 573 K and pressure 10 MPa. <i>Journal of Chemical Thermodynamics</i> , 2017 , 109, 100-108	2.9	1
13	Enthalpies of dissolution of long chain-length alkyltrimethylammonium bromide salts in water at temperatures from 278.15 to 308.15 K. <i>Journal of Chemical Thermodynamics</i> , 2015 , 81, 109-115	2.9	1
12	Solvation and association of 3:1 electrolytes in N,N-dimethylformamide. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 14468-76	3.4	1
11	Densities and Molar Volumes of Aqueous Solutions of Li2SO4 at Temperatures from 343 to 573 K. Journal of Chemical & Engineering Data, 2017, 62, 3593-3602	2.8	1
10	CYANIDE THERMODYNAMICS. 1. STABILITY CONSTANTS OF CADMIUM(II) AND ZINC(II) CYANIDE COMPLEXES IN AQUEOUS ACETONITRILE MIXTURES. <i>Journal of Coordination Chemistry</i> , 1996 , 38, 183-	1976	1
9	Enthalpies of Solution of C-Alkylresorcin[4]arenes in Water and Acetonitrile: Hydrophilic and Hydrophobic Effects. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 3763-3768	3.4	О
8	Solubility of Calcium Oxalate Monohydrate in Concentrated Electrolyte Solutions. <i>Journal of Chemical & Chemic</i>	2.8	O

LIST OF PUBLICATIONS

7	Isobaric heat capacity measurements on ternary mixtures of natural gas components methane, propane and n-heptane by differential scanning calorimetry at temperatures from 197 K to 422 K and pressures up to 32 MPa. <i>Fuel</i> , 2022 , 308, 121904	7.1	0
6	Densities and Apparent Molar Volumes of Aqueous Solutions of K4Fe(CN)6, K3Fe(CN)6, K3Co(CN)6, K2Ni(CN)4, and KAg(CN)2 at 293 to 343 K. <i>Journal of Chemical & Engineering Data</i> , 2018 , 63, 3860-3	278 873	0
5	Densities and Apparent Molar Volumes of Aqueous Solutions of NaClO4, KClO4, and KCl at Temperatures from 293 to 343 K. <i>Journal of Chemical & Engineering Data</i> , 2021 , 66, 3645-3658	2.8	0
4	Apparent Molar Heat Capacities of n-Alcohols (C2 to C4) and Symmetric Tetraalkylammonium Bromides (C2 to C5) in Water队,N-Dimethylformamide Mixtures: Methylene Group Contribution and Hydrophobic Hydration. <i>Journal of Solution Chemistry</i> , 2016 , 45, 1303-1312	1.8	
3	Temperature Dependence of Minority Carrier Lifetimes in a-Si:H. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 420, 771		
2	Densities and Apparent Molar Volumes of Rubidium and Cesium Triflates to High Concentrations in Aqueous Solution at Temperatures from 293.15 to 343.15 K. <i>Journal of Chemical & Engineering Data</i> , 2022 , 67, 123-131	2.8	
1	A Simple 1d Electrolyte: Volumetric Properties of Aqueous Solutions of Sulfuric Acid at Elevated Temperatures. <i>Journal of Chemical & Data</i> , 2021, 66, 3219-3225	2.8	