Elvira De Giglio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2101643/publications.pdf

Version: 2024-02-01

88 3,122 31
papers citations h-index

190340
53
ex g-index

93 93 docs citations

93 times ranked 4916 citing authors

#	Article	IF	Citations
1	Novel Nanoparticles Based on N,O-Carboxymethyl Chitosan-Dopamine Amide Conjugate for Nose-to-Brain Delivery. Pharmaceutics, 2022, 14, 147.	2.0	13
2	Synthesis and Use in Catalysis of Hematite Nanoparticles Obtained from a Polymer Supported Fe(III) Complex. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	10
3	Valuable effect of Manuka Honey in increasing the printability and chondrogenic potential of a naturally derived bioink. Materials Today Bio, 2022, 14, 100287.	2.6	8
4	A green approach to develop zeolite-thymol antimicrobial composites: analytical characterization and antimicrobial activity evaluation. Heliyon, 2022, 8, e09551.	1.4	13
5	Natural Formulations Based on Olea europaea L. Fruit Extract for the Topical Treatment of HSV-1 Infections. Molecules, 2022, 27, 4273.	1.7	1
6	A bioprintable gellan gum/lignin hydrogel: a smart and sustainable route for cartilage regeneration. International Journal of Biological Macromolecules, 2022, 216, 336-346.	3.6	18
7	A 3D Printed Composite Scaffold Loaded with Clodronate to Regenerate Osteoporotic Bone: In Vitro Characterization. Polymers, 2021, 13, 150.	2.0	10
8	Mesoporous zirconia surfaces with anti-biofilm properties for dental implants. Biomedical Materials (Bristol), 2021, 16, 045016.	1.7	6
9	Biopolymer hybrid materials: Development, characterization, and food packaging applications. Food Packaging and Shelf Life, 2021, 28, 100676.	3.3	65
10	Innovative Eco-Friendly Hydrogel Film for Berberine Delivery in Skin Applications. Molecules, 2021, 26, 4901.	1.7	11
11	Dopamine-loaded lipid based nanocarriers for intranasal administration of the neurotransmitter: A comparative study. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 167, 189-200.	2.0	15
12	Influence of frequency and duty cycle on the properties of antibacterial borate-based PEO coatings on titanium for bone-contact applications. Applied Surface Science, 2021, 567, 150811.	3.1	14
13	Ca-doped zirconia mesoporous coatings for biomedical applications: A physicochemical and biological investigation. Journal of the European Ceramic Society, 2020, 40, 3698-3706.	2.8	8
14	Advances in cartilage repair: The influence of inorganic clays to improve mechanical and healing properties of antibacterial Gellan gum-Manuka honey hydrogels. Materials Science and Engineering C, 2020, 108, 110444.	3.8	29
15	Unravelling the Antifungal Effect of Red Thyme Oil (Thymus vulgaris L.) Compounds in Vapor Phase. Molecules, 2020, 25, 4761.	1.7	30
16	Special Issue on Surfaces Modification and Analysis for Innovative Biomaterials. Coatings, 2020, 10, 1129.	1.2	0
17	pH-Triggered Adhesiveness and Cohesiveness of Chondroitin Sulfate-Catechol Biopolymer for Biomedical Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 712.	2.0	17
18	In vitro investigations on dopamine loaded Solid Lipid Nanoparticles. Journal of Pharmaceutical and Biomedical Analysis, 2020, 185, 113257.	1.4	30

#	Article	IF	Citations
19	From the sea to the bee: Gellan gum-honey-diatom composite to deliver resveratrol for cartilage regeneration under oxidative stress conditions. Carbohydrate Polymers, 2020, 245, 116410.	5.1	18
20	Insights into Arbutin Effects on Bone Cells: Towards the Development of Antioxidant Titanium Implants. Antioxidants, 2020, 9, 579.	2.2	15
21	Surface Characterization of Electro-Assisted Titanium Implants: A Multi-Technique Approach. Materials, 2020, 13, 705.	1.3	12
22	Editorial: Composite and Functionalized Hydrogels: Implications for Improved and Biological Properties in Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2020, 8, 636575.	2.0	2
23	Data on the influence of inorganic clays to improve mechanical and healing properties of antibacterial Gellan gum-Manuka honey hydrogels. Data in Brief, 2020, 28, 105096.	0.5	3
24	In vivo functionalization of diatom biosilica with sodium alendronate as osteoactive material. Materials Science and Engineering C, 2019, 104 , 109897 .	3.8	38
25	Electrochemical Strategies for Titanium Implant Polymeric Coatings: The Why and How. Coatings, 2019, 9, 268.	1.2	26
26	Data from inÂvivo functionalization of diatom mesoporous biosilica with bisphosphonates. Data in Brief, 2019, 24, 103831.	0.5	4
27	Selective Aerobic Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Diformylfuran or 2â€Formylâ€5â€furancarboxylic Acid in Water by using MgOâ‹CeO ₂ Mixed Oxides as Catalysts. ChemSusChem, 2018, 11, 1305-1315.	3.6	71
28	Data on Manuka Honey/Gellan Gum composite hydrogels for cartilage repair. Data in Brief, 2018, 20, 831-839.	0.5	11
29	Multi-compartment scaffold fabricated via 3D-printing as in vitro co-culture osteogenic model. Scientific Reports, 2018, 8, 15130.	1.6	30
30	Protection of dopamine towards autoxidation reaction by encapsulation into non-coated- or chitosan- or thiolated chitosan-coated-liposomes. Colloids and Surfaces B: Biointerfaces, 2018, 170, 11-19.	2.5	27
31	Antibacterial effectiveness meets improved mechanical properties: Manuka honey/gellan gum composite hydrogels for cartilage repair. Carbohydrate Polymers, 2018, 198, 462-472.	5.1	55
32	Tunable mixed oxides based on CeO ₂ for the selective aerobic oxidation of 5-(hydroxymethyl)furfural to FDCA in water. Green Chemistry, 2018, 20, 3921-3926.	4.6	58
33	Insight into halloysite nanotubes-loaded gellan gum hydrogels for soft tissue engineering applications. Carbohydrate Polymers, 2017, 163, 280-291.	5.1	99
34	Gallium-modified chitosan/poly(acrylic acid) bilayer coatings for improved titanium implant performances. Carbohydrate Polymers, 2017, 166, 348-357.	5.1	48
35	Silver-loaded chitosan coating as an integrated approach to face titanium implant-associated infections: analytical characterization and biological activity. Analytical and Bioanalytical Chemistry, 2017, 409, 7211-7221.	1.9	18
36	Liposome-modified titanium surface: A strategy to locally deliver bioactive molecules. Colloids and Surfaces B: Biointerfaces, 2017, 158, 387-396.	2.5	20

#	Article	IF	Citations
37	Data on glycerol/tartaric acid-based copolymer containing ciprofloxacin for wound healing applications. Data in Brief, 2016, 7, 1335-1340.	0.5	2
38	Data from two different culture conditions of Thalassiosira weissflogii diatom and from cleaning procedures for obtaining monodisperse nanostructured biosilica. Data in Brief, 2016, 8, 312-319.	0.5	15
39	The effect of silver or gallium doped titanium against the multidrug resistant Acinetobacter baumannii. Biomaterials, 2016, 80, 80-95.	5.7	111
40	Data in support of Gallium (Ga3+) antibacterial activities to counteract E. coli and S. epidermidis biofilm formation onto pro-osteointegrative titanium surfaces. Data in Brief, 2016, 6, 758-762.	0.5	7
41	Simulating Bacteria-Materials Interactions via Agent-Based Modeling. Communications in Computer and Information Science, 2016, , 77-82.	0.4	0
42	Chemically Modified Diatoms Biosilica for Bone Cell Growth with Combined Drugâ€Delivery and Antioxidant Properties. ChemPlusChem, 2015, 80, 1062-1062.	1.3	11
43	Synthesis of diethylcarbonate by ethanolysis of urea: A study on the recoverability and recyclability of new Zn-based heterogeneous catalysts. Applied Catalysis A: General, 2015, 493, 1-7.	2.2	14
44	Chemically Modified Diatoms Biosilica for Bone Cell Growth with Combined Drugâ€Delivery and Antioxidant Properties. ChemPlusChem, 2015, 80, 1104-1112.	1.3	75
45	Intranasal delivery of dopamine to the striatum using glycol chitosan/sulfobutylether- \hat{l}^2 -cyclodextrin based nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 180-193.	2.0	81
46	Exploiting a new glycerol-based copolymer as a route to wound healing: Synthesis, characterization and biocompatibility assessment. Colloids and Surfaces B: Biointerfaces, 2015, 136, 600-611.	2.5	6
47	Ceriumâ€Based Binary and Ternary Oxides in the Transesterification of Dimethylcarbonate with Phenol. ChemSusChem, 2014, 7, 1155-1161.	3.6	16
48	3. Polymer surface chemistry: Characterization by XPS., 2014,, 73-112.		6
49	\hat{l}_{\pm} -Tocopherol/chitosan-based nanoparticles: characterization and preliminary investigations for emulsion systems application. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	7
50	Characterization and cytocompatibility of an antibiotic/chitosan/cyclodextrins nanocoating on titanium implants. Carbohydrate Polymers, 2014, 110, 173-182.	5.1	60
51	Preparation and characterization of hybrid nanoparticles based on chitosan and poly(methacryloylglycylglycine). Journal of Nanoparticle Research, 2014, 16, 1.	0.8	5
52	An innovative, easily fabricated, silver nanoparticle-based titanium implant coating: development and analytical characterization. Analytical and Bioanalytical Chemistry, 2013, 405, 805-816.	1.9	89
53	Development and analytical characterization of vitamin(s)-loaded chitosan nanoparticles for potential food packaging applications. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	31
54	Analytical characterization and antimicrobial properties of novel copper nanoparticle–loaded electrosynthesized hydrogel coatings. Journal of Bioactive and Compatible Polymers, 2013, 28, 508-522.	0.8	54

#	Article	IF	CITATIONS
55	Occurrence of Ochratoxin A in the Wild Boar (Sus scrofa): Chemical and Histological Analysis. Toxins, 2012, 4, 1440-1450.	1.5	8
56	Ciprofloxacin-loaded Chitosan Nanoparticles as Titanium Coatings: A Valuable Strategy to Prevent Implant-associated Infections. Nano Biomedicine and Engineering, 2012, 4, .	0.3	17
57	XPS analysis of glassy carbon electrodes chemically modified with 8â€hydroxyquinolineâ€5â€sulphonic acid. Surface and Interface Analysis, 2012, 44, 491-496.	0.8	18
58	Dioxiraneâ€Mediated Heterogeneous Epoxidations with Potassium Caroate: A Solid Catalyst Bearing Anchored Ketone Moieties. European Journal of Organic Chemistry, 2012, 2012, 4616-4621.	1.2	21
59	Microcantilevers and organic transistors: two promising classes of label-free biosensing devices which can be integrated in electronic circuits. Analytical and Bioanalytical Chemistry, 2012, 402, 1799-1811.	1.9	18
60	Evaluation of <i>in vitro</i> degradation of PCL scaffolds fabricated via BioExtrusion – Part 2: Influence of pore size and geometry. Virtual and Physical Prototyping, 2011, 6, 157-165.	5.3	30
61	Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. International Journal of Pharmaceutics, 2011, 419, 296-307.	2.6	183
62	Dopamine-loaded chitosan nanoparticles: formulation and analytical characterization. Analytical and Bioanalytical Chemistry, 2011, 400, 1997-2002.	1,9	62
63	Ciprofloxacin-modified electrosynthesized hydrogel coatings to prevent titanium-implant-associated infections. Acta Biomaterialia, 2011, 7, 882-891.	4.1	93
64	Surface Segregation Assessment In Poly(<i>ε</i> â€caprolactone)â€poly(ethylene glycol) Multiblock Copolymer Films. Macromolecular Bioscience, 2010, 10, 317-327.	2.1	21
65	Hydrolytic and microbial degradation of multi-block polyurethanes based on poly(É-caprolactone)/poly(ethylene glycol) segments. Polymer Degradation and Stability, 2010, 95, 2013-2021.	2.7	34
66	Development and characterization of rhVEGF-loaded poly(HEMA–MOEP) coatings electrosynthesized on titanium to enhance bone mineralization and angiogenesis. Acta Biomaterialia, 2010, 6, 282-290.	4.1	39
67	Evaluation ofin vitrodegradation of PCL scaffolds fabricated via BioExtrusion. Part 1: Influence of the degradation environment. Virtual and Physical Prototyping, 2010, 5, 65-73.	5. 3	46
68	Biocompatibility of Poly(Acrylic Acid) Thin Coatings Electro-synthesized onto TiAlV-based Implants. Journal of Bioactive and Compatible Polymers, 2010, 25, 374-391.	0.8	49
69	Cell behaviour on bioactive polymeric coatings. Italian Journal of Anatomy and Embryology, 2010, 115, 127-33.	0.1	2
70	Electrosynthesis of hydrogel films on metal substrates for the development of coatings with tunable drug delivery performances. Journal of Biomedical Materials Research - Part A, 2009, 88A, 1048-1057.	2.1	34
71	Contact effects in organic thin-film transistor sensors. Organic Electronics, 2009, 10, 233-239.	1.4	51
72	Cerium(IV)oxide modification by inclusion of a hetero-atom: A strategy for producing efficient and robust nano-catalysts for methanol carboxylation. Catalysis Today, 2008, 137, 125-131.	2.2	93

#	Article	IF	CITATIONS
73	Analytical investigations of poly(acrylic acid) coatings electrodeposited on titanium-based implants: a versatile approach to biocompatibility enhancement. Analytical and Bioanalytical Chemistry, 2007, 389, 2055-2063.	1.9	82
74	A new titanium biofunctionalized interface based on poly(pyrrole-3-acetic acid) coating: proliferation of osteoblast-like cells and future perspectives. Journal of Materials Science: Materials in Medicine, 2007, 18, 1781-1789.	1.7	26
75	Electrosynthesis and analytical characterization of PMMA coatings on titanium substrates as barriers against ion release. Analytical and Bioanalytical Chemistry, 2005, 381, 626-633.	1.9	22
76	Synthesis, analytical characterization and bioactivity of Ag and Cu nanoparticles embedded in poly-vinyl-methyl-ketone films. Analytical and Bioanalytical Chemistry, 2005, 382, 1912-1918.	1.9	134
77	Surface (XPS, SIMS) chemical investigation on poly(pyrrole-3-acetic acid) films electrosynthesized on Ti and TiAIV substrates for the development of new bioactive substrates. Surface and Interface Analysis, 2005, 37, 580-586.	0.8	21
78	Analytical Characterization of Poly(Pyrrole-3-Carboxylic Acid) Films Electrosynthesised on Pt, Ti and Ti/Al/V Substrates. Annali Di Chimica, 2004, 94, 207-218.	0.6	6
79	Electroanalytical and spectroscopic characterization of poly(o-phenylenediamine) grown on highly oriented pyrolytic graphite. Annali Di Chimica, 2003, 93, 209-21.	0.6	1
80	Electropolymerization of pyrrole on titanium substrates for the future development of new biocompatible surfaces. Biomaterials, 2001, 22, 2609-2616.	5.7	105
81	Spectroscopic investigation on polymer films obtained by oxidation of o-phenylenediamine on platinum electrodes at different pHs. Journal of Materials Chemistry, 2001, 11, 1812-1817.	6.7	77
82	Analytical characterization of collagen- and/or hydroxyapatite-modified polypyrrole films electrosynthesized on Ti-substrates for the development of new bioactive surfaces. Journal of Biomaterials Science, Polymer Edition, 2001, 12, 63-76.	1.9	28
83	A combined XPS-SEM/EDX investigation on explanted UHMW polyethylene acetabular cups: possible role of silicon traces in the wear debris. Journal of Materials Science: Materials in Medicine, 2001, 12, 23-28.	1.7	3
84	Rh3+ and Rh3+ \hat{a} e"diamine complexes intercalated in \hat{l}^3 -titanium hydrogen phosphate. Synthesis, characterisation and catalytic activity towards aniline oxidative carbonylation processes. Journal of Molecular Catalysis A, 2000, 157, 131-141.	4.8	27
85	Synthesis, analytical characterization, and osteoblast adhesion properties on RGD-grafted polypyrrole coatings on titanium substrates. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 1073-1083.	1.9	160
86	Electrosynthesised thin polymer films: the role of XPS in the design of application oriented innovative materials. Journal of Electron Spectroscopy and Related Phenomena, 1999, 100, 35-53.	0.8	47
87	Permanent iridium modifier deposited on tungsten and zirconium-treated platforms in electrothermal atomic absorption spectrometry: vaporization of bismuth, silver and tellurium. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1999, 54, 455-467.	1.5	26
88	Development and analytical characterization of cysteine-grafted polypyrrole films electrosynthesized on Ptand Ti-substrates as precursors of bioactive interfaces. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 845-858.	1.9	57