Nigel B W Harris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2101494/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 1984, 25, 956-983.	2.8	6,796
2	Post-collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology, 1996, 37, 45-71.	2.8	897
3	Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 1998, 39, 689-710.	2.8	872
4	Geochemical characteristics of collision-zone magmatism. Geological Society Special Publication, 1986, 19, 67-81.	1.3	822
5	Constant elevation of southern Tibet over the past 15 million years. Nature, 2003, 421, 622-624.	27.8	564
6	Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya. Journal of Petrology, 1993, 34, 345-368.	2.8	442
7	Precambrian Tectonics and Crustal Evolution in South India. Journal of Geology, 1984, 92, 3-20.	1.4	438
8	Trace element modelling of pelite-derived granites. Contributions To Mineralogy and Petrology, 1992, 110, 46-56.	3.1	351
9	Age and composition of dikes in Southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 2001, 29, 339.	4.4	345
10	Decompression and anatexis of Himalayan metapelites. Tectonics, 1994, 13, 1537-1546.	2.8	312
11	Nature of the Source Regions for Post-collisional, Potassic Magmatism in Southern and Northern Tibet from Geochemical Variations and Inverse Trace Element Modelling. Journal of Petrology, 2004, 45, 555-607.	2.8	309
12	lsotopic constraints on the structural relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series, Garhwal Himalaya. Bulletin of the Geological Society of America, 2000, 112, 467-477.	3.3	302
13	Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth and Planetary Science Letters, 2005, 236, 773-796.	4.4	301
14	The significance of monazite U–Th–Pb age data in metamorphic assemblages; a combined study of monazite and garnet chronometry. Earth and Planetary Science Letters, 2000, 181, 327-340.	4.4	294
15	Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth and Planetary Science Letters, 2004, 228, 195-212.	4.4	283
16	Crustal Evolution in South India: Constraints from Nd Isotopes. Journal of Geology, 1994, 102, 139-150.	1.4	278
17	Preliminary conclusions of the Royal Society and Academia Sinica 1985 geotraverse of Tibet. Nature, 1986, 323, 501-507.	27.8	247
18	REE fractionation and Nd-isotope disequilibrium during crustal anatexis: constraints from Himalayan leucogranites. Chemical Geology, 1997, 139, 249-269.	3.3	241

#	Article	IF	CITATIONS
19	The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 241, 4-15.	2.3	230
20	Post-collision magmatism and tectonics in northwest Anatolia. Contributions To Mineralogy and Petrology, 1994, 117, 241-252.	3.1	206
21	Li and Î7Li in Himalayan rivers: Proxies for silicate weathering?. Earth and Planetary Science Letters, 2005, 237, 387-401.	4.4	187
22	40Ar-39Ar and Rb-Sr geochronology of high-pressure metamorphism and exhumation history of the Tavsanli Zone, NW Turkey. Contributions To Mineralogy and Petrology, 1999, 137, 46-58.	3.1	178
23	Timing of prograde metamorphism in the Zanskar Himalaya. Geology, 1999, 27, 395.	4.4	174
24	Tectonic Evolution of the Tibetan Plateau: A Working Hypothesis Based on the Archipelago Model of Orogenesis. International Geology Review, 1995, 37, 473-508.	2.1	171
25	Exhumation of blueschists along a Tethyan suture in northwest Turkey. Tectonophysics, 1998, 285, 275-299.	2.2	168
26	The application of single zircon evaporation and model Nd ages to the interpretation of polymetamorphic terrains: an example from the Proterozoic mobile belt of south India. Contributions To Mineralogy and Petrology, 1998, 131, 181-195.	3.1	167
27	The pressure-temperature-time path of migmatites from the Sikkim Himalaya. Journal of Metamorphic Geology, 2004, 22, 249-264.	3.4	164
28	U–Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garze fold belt, eastern Tibetan Plateau: constraints on petrogenesis and tectonic evolution of the basement. Contributions To Mineralogy and Petrology, 2006, 152, 75-88.	3.1	164
29	Tectonothermal evolution of the High Himalayan Crystalline Sequence, Langtang Valley, northern Nepal. Journal of Metamorphic Geology, 1992, 10, 439-452.	3.4	160
30	Geochemistry of granitic melts produced during the incongruent melting of muscovite: Implications for the extraction of Himalayan leucogranite magmas. Journal of Geophysical Research, 1995, 100, 15767-15777.	3.3	156
31	The identification and significance of pure sediment-derived granites. Earth and Planetary Science Letters, 2017, 467, 57-63.	4.4	153
32	Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet. Bulletin of the Geological Society of America, 2011, 123, 218-239.	3.3	152
33	Relative contributions of silicate and carbonate rocks to riverine Sr fluxes in the headwaters of the Ganges. Geochimica Et Cosmochimica Acta, 2005, 69, 2221-2240.	3.9	142
34	Crustal Melting and the Flow of Mountains. Elements, 2011, 7, 253-260.	0.5	141
35	Pan-African charnockite formation in Kerala, South India. Geological Magazine, 1992, 129, 257-264.	1.5	140
36	Geobarometry, Geothermometry, and Late Archean Geotherms from the Granulite Facies Terrain of South India. Journal of Geology, 1982, 90, 509-527.	1.4	139

#	Article	IF	CITATIONS
37	Crustal accretion in the Pan African: Nd and Sr isotope evidence from the Arabian Shield. Earth and Planetary Science Letters, 1982, 59, 315-326.	4.4	137
38	Developing an inverted Barrovian sequence; insights from monazite petrochronology. Earth and Planetary Science Letters, 2014, 403, 418-431.	4.4	132
39	Crustal evolution in north-east and east Africa from model Nd ages. Nature, 1984, 309, 773-776.	27.8	127
40	Channel flow and the Himalayan–Tibetan orogen: a critical review. Journal of the Geological Society, 2007, 164, 511-523.	2.1	126
41	Dehydration and Incipient Charnockite Formation: A Phase Equilibria and Fluid Inclusion Study from South India. Journal of Geology, 1990, 98, 915-926.	1.4	121
42	From sediment to granite: timescales of anatexis in the upper crust. Chemical Geology, 2000, 162, 155-167.	3.3	117
43	Geochemistry and petrogenesis of a peralkaline granite complex from the Midian Mountains, Saudi Arabia. Lithos, 1980, 13, 325-337.	1.4	112
44	Cretaceous plutonism in Central Tibet: an example of post-collision magmatism?. Journal of Volcanology and Geothermal Research, 1990, 44, 21-32.	2.1	109
45	Geochemical and Pb-Sr-Nd isotopic compositions of granitoids from western Qinling belt: Constraints on basement nature and tectonic affinity. Science in China Series D: Earth Sciences, 2007, 50, 184-196.	0.9	106
46	Correlation of lithotectonic units across the eastern Himalaya, Bhutan. Geology, 2006, 34, 341.	4.4	100
47	Burial and exhumation history of a Lesser Himalayan schist: Recording the formation of an inverted metamorphic sequence in NW India. Earth and Planetary Science Letters, 2007, 264, 375-390.	4.4	100
48	Himalayan-Tibetan analogies for the evolution of the Zimbabwe Craton and Limpopo Belt. Precambrian Research, 1992, 55, 571-587.	2.7	97
49	Geochemical constraints on crustal anatexis: a case study from the Pan-African Damara granitoids of Namibia. Contributions To Mineralogy and Petrology, 1996, 123, 406-423.	3.1	97
50	Lithostratigraphic correlations in the western Himalaya—An isotopic approach. Geology, 1999, 27, 585.	4.4	93
51	The significance of Himalayan rivers for silicate weathering rates: evidence from the Bhote Kosi tributary. Chemical Geology, 1998, 144, 205-220.	3.3	92
52	Fluxes of Sr into the headwaters of the Ganges. Geochimica Et Cosmochimica Acta, 2003, 67, 2567-2584.	3.9	91
53	Tectonic interleaving along the Main Central Thrust, Sikkim Himalaya. Journal of the Geological Society, 2014, 171, 255-268.	2.1	87
54	Fluid-enhanced melting during prograde metamorphism. Journal of the Geological Society, 2001, 158, 233-241.	2.1	86

#	Article	IF	CITATIONS
55	Carbon isotope compositions of fluid inclusions in charnockites from southern India. Nature, 1988, 333, 167-170.	27.8	85
56	Silicate weathering rates decoupled from the 87Sr/86Sr ratio of the dissolved load during Himalayan erosion. Chemical Geology, 2003, 201, 119-139.	3.3	84
57	U–Pb zircon SHRIMP ages, geochemical and Sr–Nd–Pb isotopic compositions of intrusive rocks from the Longshan–Tianshui area in the southeast corner of the Qilian orogenic belt, China: Constraints on petrogenesis and tectonic affinity. Journal of Asian Earth Sciences, 2006, 27, 751-764.	2.3	84
58	Carbonic fluid inclusions in South Indian granulites: evidence for entrapment during charnockite formation. Contributions To Mineralogy and Petrology, 1991, 108, 318-330.	3.1	80
59	Controls on the 87Sr/86Sr Ratio of Carbonates in the Garhwal Himalaya, Headwaters of the Ganges. Journal of Geology, 2001, 109, 737-753.	1.4	77
60	The significance of Cenozoic magmatism from the western margin of the eastern syntaxis, southeast Tibet. Contributions To Mineralogy and Petrology, 2010, 160, 83-98.	3.1	75
61	Paleogene crustal anatexis and metamorphism in Lhasa terrane, eastern Himalayan syntaxis: Evidence from U–Pb zircon ages and Hf isotopic compositions of the Nyingchi Complex. Gondwana Research, 2012, 21, 100-111.	6.0	75
62	Cenozoic Volcanism on the Hangai Dome, Central Mongolia: Geochemical Evidence for Changing Melt Sources and Implications for Mechanisms of Melting. Journal of Petrology, 2012, 53, 1913-1942.	2.8	72
63	The Jabel Sayid complex, Arabian Shield: geochemical constraints on the origin of peralkaline and related granites. Journal of the Geological Society, 1986, 143, 287-295.	2.1	71
64	Erosion history of the Tibetan Plateau since the last interglacial: constraints from the first studies of cosmogenic 10Be from Tibetan bedrock. Earth and Planetary Science Letters, 2004, 217, 33-42.	4.4	70
65	Origin and evolution of multi-stage felsic melts in eastern Gangdese belt: Constraints from U–Pb zircon dating and Hf isotopic composition. Lithos, 2011, 127, 54-67.	1.4	69
66	The role of fluids in the formation of High Himalayan leucogranites. Geological Society Special Publication, 1993, 74, 391-400.	1.3	68
67	First field evidence of southward ductile flow of Asian crust beneath southern Tibet. Geology, 2007, 35, 727.	4.4	68
68	Ion-microprobe determinations of trace-element concentrations in garnets from anatectic assemblages. Chemical Geology, 1992, 100, 41-49.	3.3	67
69	Late Cretaceous (~81Ma) high-temperature metamorphism in the southeastern Lhasa terrane: Implication for the Neo-Tethys ocean ridge subduction. Tectonophysics, 2013, 608, 112-126.	2.2	67
70	Significance of weathering Himalayan metasedimentary rocks and leucogranites for the Sr isotope evolution of seawater during the early Miocene. Geology, 1995, 23, 795.	4.4	66
71	Metamorphism of cordierite gneisses from the Bangalore region of the Indian Archean. Lithos, 1982, 15, 89-98.	1.4	62
72	Detrital zircon U–Pb geochronology, trace-element and Hf isotope geochemistry of the metasedimentary rocks in the Eastern Himalayan syntaxis: Tectonic and paleogeographic implications. Gondwana Research, 2017, 41, 207-221.	6.0	59

#	Article	IF	CITATIONS
73	Empirical constraints on extrusion mechanisms from the upper margin of an exhumed high-grade orogenic core, Sutlej valley, NW India. Tectonophysics, 2009, 477, 77-92.	2.2	58
74	The petrogenesis of alkaline intrusives from Arabia and northeast Africa and their implications for within-plate magmatism. Tectonophysics, 1982, 83, 243-258.	2.2	56
75	Melt Generation and Fluid Flow in the Thermal Aureole of the Bushveld Complex. Journal of Petrology, 2003, 44, 1031-1054.	2.8	56
76	Using Uâ€Thâ€Pb petrochronology to determine rates of ductile thrusting: Time windows into the Main Central Thrust, Sikkim Himalaya. Tectonics, 2015, 34, 1355-1374.	2.8	56
77	Archean rocks from the eastern Lac Seul region of the English River Gneiss Belt, northwestern Ontario, part 2. Geochronology. Canadian Journal of Earth Sciences, 1976, 13, 1212-1215.	1.3	55
78	The application of spinel-bearing metapelites to P/T determinations: An example from South India. Contributions To Mineralogy and Petrology, 1981, 76, 229-233.	3.1	54
79	Timing of granulite-facies metamorphism in the eastern Himalayan syntaxis and its tectonic implications. Tectonophysics, 2010, 485, 231-244.	2.2	54
80	Geochronology and geochemistry of Mesoproterozoic granitoids in the Lhasa terrane, south Tibet: Implications for the early evolution of Lhasa terrane. Precambrian Research, 2013, 236, 46-58.	2.7	52
81	Possible constraints on anatectic melt residence times from accessory mineral dissolution rates: an example from Himalayan leucogranites. Mineralogical Magazine, 1997, 61, 29-36.	1.4	51
82	Tectonic implications of Palaeoproterozoic anatexis and Late Miocene metamorphism in the Lesser Himalayan Sequence, Sutlej Valley, NW India. Journal of the Geological Society, 2008, 165, 725-737.	2.1	49
83	The trace element and isotope geochemistry of the Sabaloka Igneous Complex, Sudan. Journal of the Geological Society, 1983, 140, 245-256.	2.1	48
84	Evolution of continental crust in southern Africa. Earth and Planetary Science Letters, 1987, 83, 85-93.	4.4	48
85	Interactions between deformation, magmatism and hydrothermal activity during active crustal thickening: a field example from Nanga Parbat, Pakistan Himalayas. Mineralogical Magazine, 1997, 61, 37-52.	1.4	48
86	A shortâ€duration pulse of ductile normal shear on the outer South Tibetan detachment in Bhutan: Alternating channel flow and critical taper mechanics of the eastern Himalaya. Tectonics, 2011, 30, .	2.8	46
87	Isotope studies reveal a complete Himalayan section in the Nanga Parbat syntaxis. Geology, 2003, 31, 1109.	4.4	45
88	On discrimination between carbonate and silicate inputs to Himalayan rivers. Numerische Mathematik, 2015, 315, 120-166.	1.4	45
89	Mapping granite and gneiss in domes along the North Himalayan antiform with ASTER SWIR band ratios. Bulletin of the Geological Society of America, 2005, 117, 879.	3.3	44
90	Neodymium isotope constraints on the tectonic evolution of East Gondwana. Journal of Southeast Asian Earth Sciences, 1996, 14, 119-125.	0.2	43

#	Article	IF	CITATIONS
91	The Significance of Channel and Fluid-Inclusion CO2 in Cordierite: Evidence from Carbon Isotopes. Journal of Petrology, 1993, 34, 233-258.	2.8	41
92	Evolution of the melt source during protracted crustal anatexis: An example from the Bhutan Himalaya. Geology, 2020, 48, 87-91.	4.4	37
93	Geology of the northern part of the Nanga Parbat massif, northern Pakistan, and its implications for Himalayan tectonics. Journal of the Geological Society, 1992, 149, 557-567.	2.1	35
94	U-Pb ages of Kude and Sajia leucogranites in Sajia dome from North Himalaya and their geological implications. Science Bulletin, 2004, 49, 2087.	1.7	35
95	A novel palaeoaltimetry proxy based on spore and pollen wall chemistry. Earth and Planetary Science Letters, 2012, 353-354, 22-28.	4.4	35
96	Advective fluid transport during charnockite formation; an example from southern India. Earth and Planetary Science Letters, 1989, 93, 151-156.	4.4	34
97	Isotopic constraints on fluid infiltration from an eclogite facies shear zone, HolsenÃ,y, Norway. Journal of Metamorphic Geology, 1994, 12, 311-325.	3.4	34
98	Oligocene magmatism in the eastern margin of the east Himalayan syntaxis and its implication for the India–Asia post-collisional process. Lithos, 2012, 154, 181-192.	1.4	33
99	Evolution of continental crust in the Central Andes; constraints from Nd isotope systematics. Geology, 1989, 17, 615.	4.4	32
100	The Tertiary collision-related thermal history of the NW Himalaya. Journal of Metamorphic Geology, 2002, 20, 827-843.	3.4	32
101	A granite?gabbro complex from Madagascar: constraints on melting of the lower crust. Contributions To Mineralogy and Petrology, 2003, 145, 585-599.	3.1	32
102	Tectonic Evolution of Metasediments from the Gangdise Terrane, Asian Plate, Eastern Himalayan Syntaxis, Tibet. International Geology Review, 2008, 50, 914-930.	2.1	32
103	Late Devonian-Early Carboniferous magmatism in the Lhasa terrane and its tectonic implications: Evidences from detrital zircons in the Nyingchi Complex. Lithos, 2016, 245, 47-59.	1.4	32
104	Rapid Eocene erosion, sedimentation and burial in the eastern Himalayan syntaxis and its geodynamic significance. Gondwana Research, 2013, 23, 715-725.	6.0	31
105	Significance of contrasting magmatism in North East Africa and Saudi Arabia. Nature, 1981, 289, 394-396.	27.8	30
106	The tectonic implications of contrasting granite magmatism between the Kohistan island arc and the Nanga Parbat-Haramosh Massif, Pakistan Himalaya. Geological Society Special Publication, 1993, 74, 173-191.	1.3	30
107	The geology and tectonics of central Bhutan. Journal of the Geological Society, 2016, 173, 352-369.	2.1	29
108	Isotopic constraints on the cooling history of the Nanga Parbat-Haramosh Massif and Kohistan arc, western Himalaya. Tectonics, 1995, 14, 237-252.	2.8	28

#	Article	IF	CITATIONS
109	Garnet–monazite rare earth element relationships in sub-solidus metapelites: a case study from Bhutan. Geological Society Special Publication, 2019, 478, 145-166.	1.3	28
110	Pre-metamorphic Arî—,Ar ages from biotite inclusions in garnet. Geochimica Et Cosmochimica Acta, 1997, 61, 3873-3878.	3.9	27
111	The thermal response of a metamorphic belt to extension: constraints from laser Ar data on metamorphic micas. Earth and Planetary Science Letters, 1998, 162, 153-164.	4.4	27
112	Argon behaviour in an inverted Barrovian sequence, Sikkim Himalaya: The consequences of temperature and timescale on 40 Ar/ 39 Ar mica geochronology. Lithos, 2015, 238, 37-51.	1.4	27
113	Tectonic and climatic drivers of Asian monsoon evolution. Nature Communications, 2021, 12, 4022.	12.8	27
114	Carbon-isotope constraints on fluid advection during contrasting examples of incipient charnockite formation. Journal of Metamorphic Geology, 1993, 11, 833-843.	3.4	24
115	Crustal reworking in southern Africa: constraints from Sr-Nd isotope studies in Archaean to Pan-African terrains. Tectonophysics, 1989, 161, 257-270.	2.2	19
116	The implications of Sr-isotope disequilibrium for rates of prograde metamorphism and melt extraction in anatectic terrains. Geological Society Special Publication, 1998, 138, 171-182.	1.3	19
117	Archean rocks from the eastern Lac Seul region of the English River Gneiss Belt, northwestern Ontario, part 1. Petrology, chemistry, and metamorphism. Canadian Journal of Earth Sciences, 1976, 13, 1201-1211.	1.3	18
118	Late Precambrian evolution of Afro-Arabian crust from ocean arc to craton: Discussion and reply. Bulletin of the Geological Society of America, 1982, 93, 174.	3.3	18
119	Geochemistry and petrogenesis of a nepheline syenite-carbonatite complex from the Sudan. Geological Magazine, 1983, 120, 115-127.	1.5	17
120	Tectonic implications of garnet-bearing mantle xenoliths exhumed by Quaternary magmatism in the Hangay dome, central Mongolia. Contributions To Mineralogy and Petrology, 2010, 160, 67-81.	3.1	17
121	The significance of garnet and cordierite from the Sioux Lookout region of the English River gneiss belt, Northern Ontario. Contributions To Mineralogy and Petrology, 1976, 55, 91-104.	3.1	15
122	Radiogenic isotopes and the interpretation of granitic rocks. Episodes, 1996, 19, 107-113.	1.2	15
123	Low-pressure crustal anatexis: the significance of spinel and cordierite from metapelitic assemblages at Nanga Parbat, northern Parkistan. Geological Society Special Publication, 1998, 138, 183-198.	1.3	14
124	Contrasting anatectic styles at Nanga Parbat, northern Pakistan. , 1999, , .		14
125	The petrology and petrogenesis of some muscovite granite sills from the Barousse Massif, Central Pyrenees. Contributions To Mineralogy and Petrology, 1974, 45, 215-230.	3.1	13
126	Contrasting retrograde oxygen isotope exchange behaviour and implications: examples from the Langtang Valley, Nepal. Journal of Metamorphic Geology, 1994, 12, 261-272.	3.4	13

#	Article	IF	CITATIONS
127	Tectonic erosion and crustal relamination during the India-Asian continental collision: Insights from Eocene magmatism in the southeastern Gangdese belt. Lithos, 2019, 346-347, 105161.	1.4	12
128	Some migmatite types and their origins, from the Barousse Massif, Central Pyrenees. Geological Magazine, 1974, 111, 319-328.	1.5	11
129	Correlation between melting, deformation and fluid interaction in the continental crust of the High Himalayas, Langtang Valley, Nepal. Terra Nova, 1994, 6, 229-237.	2.1	11
130	Tracing the origins of the western Himalaya: an isotopic comparison of the Nanga Parbat massif and Zanskar Himalaya. Geological Society Special Publication, 2000, 170, 201-218.	1.3	8
131	An 40Ar–39Ar laser-probe study of pseudotachylites in charnockite gneisses from the Cauvery Shear Zone system, South India. Gondwana Research, 2006, 10, 357-362.	6.0	8
132	Petrogenesis of Himalayan Leucogranites: Perspective From a Combined Elemental and Fe‧râ€Nd Isotope Study. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021839.	3.4	7
133	Carbon dioxide in the deep crust. Nature, 1989, 340, 347-348.	27.8	6
134	The Significance of the Palghat-Cauvery Shear Zone in Southern India for Correlations between South-West India and Eastern Madagascar. Gondwana Research, 1999, 2, 471-472.	6.0	5
135	The origin of granite erratics in the Pleistocene Patella beach, Gower, South Wales. Geological Magazine, 1985, 122, 297-302.	1.5	4
136	A 12-week, whole-food carbohydrate-restricted feasibility study in overweight children. Journal of Insulin Resistance, 2018, 3, .	1.3	3
137	The Red Sea line and Arabian–Nubian magmatism. Nature, 1982, 296, 178-178.	27.8	2
138	Possible source regions for â€~within-plate' magmatism in NE Africa and Arabia. Precambrian Research, 1982, 16, A23-A23.	2.7	0
139	Geochronological framework of South India. Journal of South American Earth Sciences, 1997, 10, IV-V.	1.4	0
140	The 21st Himalayan-Karakoram-Tibet workshop: Clarification. Gondwana Research, 2006, 10, 398.	6.0	0