Victor J Hruby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2101291/publications.pdf Version: 2024-02-01

		39113	36203
317	13,956	52	101
papers	citations	h-index	g-index
325	325	325	8930
all docs	docs citations	times ranked	citing authors

VICTOR | HRURY

#	Article	IF	CITATIONS
1	Antagonism of the mu-delta opioid receptor heterodimer enhances opioid antinociception by activating Src and calcium/calmodulin-dependent protein kinase II signaling. Pain, 2022, 163, 146-158.	2.0	11
2	CLIPSing Melanotan-II to Discover Multiple Functionally Selective hMCR Agonists. Journal of Medicinal Chemistry, 2022, 65, 4007-4017.	2.9	2
3	<scp>MC4R</scp> biased signalling and the conformational basis of biological function selections. Journal of Cellular and Molecular Medicine, 2022, 26, 4125-4136.	1.6	7
4	Development of novel frogâ \in skin peptide scaffolds with selectivity towards melanocortin receptor subtypes. Peptide Science, 2021, 113, e24209.	1.0	1
5	Multiple Applications of a Novel Biarsenical Imaging Probe in Fluorescence and PET Imaging of Melanoma. Bioconjugate Chemistry, 2021, 32, 497-501.	1.8	2
6	Multifunctional Enkephalin Analogs with a New Biological Profile: MOR/DOR Agonism and KOR Antagonism. Biomedicines, 2021, 9, 625.	1.4	5
7	Aged Brains Express Less Melanocortin Receptors, Which Correlates with Age-Related Decline of Cognitive Functions. Molecules, 2021, 26, 6266.	1.7	8
8	Ionic Liquid Catalyzed Efficient Regioselective Synthesis of 1,4-Disubstituted 1,2,3-Triazoles Under Metal and Solvent Free Conditions. Current Organocatalysis, 2021, 8, 223-227.	0.3	0
9	C-terminal modified Enkephalin-like tetrapeptides with enhanced affinities at the kappa opioid receptor and monoamine transporters. Bioorganic and Medicinal Chemistry, 2021, 51, 116509.	1.4	1
10	Development of Ligand-Drug Conjugates Targeting Melanoma through the Overexpressed Melanocortin 1 Receptor. ACS Pharmacology and Translational Science, 2020, 3, 921-930.	2.5	5
11	Melanocortin 3 receptor activation with [D-Trp8]-Î ³ -MSH suppresses inflammation in apolipoprotein E deficient mice. European Journal of Pharmacology, 2020, 880, 173186.	1.7	9
12	Template-based alignment modeling: an innovative ligand-based approach for medicinal chemists. Medicinal Chemistry Research, 2020, 29, 1160-1167.	1.1	1
13	Toward a Universal μ-Agonist Template for Template-Based Alignment Modeling of Opioid Ligands. ACS Omega, 2019, 4, 17457-17476.	1.6	8
14	Development of N-Acetylated Dipalmitoyl-S-Glyceryl Cysteine Analogs as Efficient TLR2/TLR6 Agonists. Molecules, 2019, 24, 3512.	1.7	5
15	Multivalent peptide and peptidomimetic ligands for the treatment of pain without toxicities and addiction. Peptides, 2019, 116, 63-67.	1.2	14
16	Development of Macrocyclic Peptidomimetics Containing Constrained α,α-Dialkylated Amino Acids with Potent and Selective Activity at Human Melanocortin Receptors. Journal of Medicinal Chemistry, 2018, 61, 4263-4269.	2.9	11
17	Replacement of Arg with Nle and modified D-Phe in the core sequence of MSHs, Ac-His-D-Phe-Arg-Trp-NH2, leads to hMC1R selectivity and pigmentation. European Journal of Medicinal Chemistry, 2018, 151, 815-823.	2.6	18
18	Development of Novel Melanocortin Receptor Agonists Based on the Cyclic Peptide Framework of Sunflower Trypsin Inhibitor-1. Journal of Medicinal Chemistry, 2018, 61, 3674-3684.	2.9	29

#	Article	IF	CITATIONS
19	Protection against βâ€amyloid neurotoxicity by a nonâ€toxic endogenous Nâ€terminal βâ€amyloid fragment anc its active hexapeptide core sequence. Journal of Neurochemistry, 2018, 144, 201-217.	2.1	23
20	Cyclic biphalin analogues with a novel linker lead to potent agonist activities at mu, delta, and kappa opioid receptors. Bioorganic and Medicinal Chemistry, 2018, 26, 3664-3667.	1.4	6
21	Synthesis and Evaluation of a Novel Bivalent Selective Antagonist for the Mu-Delta Opioid Receptor Heterodimer that Reduces Morphine Withdrawal in Mice. Journal of Medicinal Chemistry, 2018, 61, 6075-6086.	2.9	33
22	The Muâ€Đelta Opioid Receptor Heterodimer Promotes Acute and Chronic Morphine Induced Dependence/Withdrawal in Mice. FASEB Journal, 2018, 32, 683.1.	0.2	0
23	Synthesis and Investigation of Mixed μâ€Opioid and Î′â€Opioid Agonists as Possible Bivalent Ligands for Treatment of Pain. Journal of Heterocyclic Chemistry, 2017, 54, 1228-1235.	1.4	3
24	Recent Advances in the Realm of Allosteric Modulators for Opioid Receptors for Future Therapeutics. ACS Chemical Neuroscience, 2017, 8, 1147-1158.	1.7	37
25	Fluorescent-labeled bioconjugates of the opioid peptides biphalin and DPDPE incorporating fluorescein–maleimide linkers. Future Medicinal Chemistry, 2017, 9, 859-869.	1.1	22
26	Structural Insights into Selective Ligand–Receptor Interactions Leading to Receptor Inactivation Utilizing Selective Melanocortin 3 Receptor Antagonists. Biochemistry, 2017, 56, 4201-4209.	1.2	3
27	Design of MC1R Selective γ-MSH Analogues with Canonical Amino Acids Leads to Potency and Pigmentation. Journal of Medicinal Chemistry, 2017, 60, 9320-9329.	2.9	17
28	The Melanocortin Receptor System: A Target for Multiple Degenerative Diseases. Current Protein and Peptide Science, 2016, 17, 488-496.	0.7	36
29	Various modifications of the amphipathic dynorphin <scp>A</scp> pharmacophore for rat brain brain bradykinin receptors. Chemical Biology and Drug Design, 2016, 88, 615-619.	1.5	2
30	Tumor Targeting and Pharmacokinetics of a Near-Infrared Fluorescent-Labeled δ-Opioid Receptor Antagonist Agent, Dmt-Tic-Cy5. Molecular Pharmaceutics, 2016, 13, 534-544.	2.3	13
31	Design of cyclized selective melanotropins. Biopolymers, 2016, 106, 876-883.	1.2	15
32	Cyclic non-opioid dynorphin A analogues for the bradykinin receptors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5513-5516.	1.0	5
33	Design of cyclic peptides with biological activities from biologically active peptides: the case of peptide modulators of melanocortin receptors. Biopolymers, 2016, 106, 884-888.	1.2	11
34	Discovery of Stable Non-opioid Dynorphin A Analogues Interacting at the Bradykinin Receptors for the Treatment of Neuropathic Pain. ACS Chemical Neuroscience, 2016, 7, 1746-1752.	1.7	7
35	Dynorphin A analogs for the treatment of chronic neuropathic pain. Future Medicinal Chemistry, 2016, 8, 165-177.	1.1	17
36	Structure–Activity Relationships of [des-Arg ⁷]Dynorphin A Analogues at the κ Opioid Receptor. Journal of Medicinal Chemistry, 2016, 59, 10291-10298.	2.9	11

#	Article	IF	CITATIONS
37	Enkephalin analogues with N-phenyl-N-(piperidin-2-ylmethyl)propionamide derivatives: Synthesis and biological evaluations. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 222-227.	1.0	4
38	Design synthesis and structure–activity relationship of 5-substituted (tetrahydronaphthalen-2yl)methyl with N-phenyl-N-(piperidin-2-yl)propionamide derivatives as opioid ligands. Bioorganic and Medicinal Chemistry, 2016, 24, 85-91.	1.4	3
39	Cyclic Opioid Peptides. Current Medicinal Chemistry, 2016, 23, 1288-1303.	1.2	36
40	Rational Approach to the Design of Bioactive Peptidomimetics: Recent Developments in Opioid Agonist Peptides. Studies in Natural Products Chemistry, 2015, , 27-68.	0.8	4
41	Design, synthesis, and biological evaluation of a series of bifunctional ligands of opioids/SSRIs. Bioorganic and Medicinal Chemistry, 2015, 23, 1251-1259.	1.4	4
42	Azepinone-Containing Tetrapeptide Analogues of Melanotropin Lead to Selective <i>h</i> MC4R Agonists and <i>h</i> MC5R Antagonist. ACS Medicinal Chemistry Letters, 2015, 6, 192-197.	1.3	13
43	Systematic Backbone Conformational Constraints on a Cyclic Melanotropin Ligand Leads to Highly Selective Ligands for Multiple Melanocortin Receptors. Journal of Medicinal Chemistry, 2015, 58, 6359-6367.	2.9	16
44	Discovery of tripeptide-derived multifunctional ligands possessing delta/mu opioid receptor agonist and neurokinin 1 receptor antagonist activities. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3716-3720.	1.0	14
45	Design and synthesis of novel bivalent ligands (MOR and DOR) by conjugation of enkephalin analogues with 4-anilidopiperidine derivatives. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4683-4688.	1.0	10
46	Discovery of Novel Multifunctional Ligands with μ/Ĵ´ Opioid Agonist/Neurokinin-1 (NK1) Antagonist Activities for the Treatment of Pain. Journal of Medicinal Chemistry, 2015, 58, 8573-8583.	2.9	16
47	Design, synthesis and biological evaluation of multifunctional ligands targeting opioid and bradykinin 2 receptors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4148-4152.	1.0	4
48	Discovery of 5-substituted tetrahydronaphthalen-2yl-methyl with N-phenyl-N-(piperidin-4-yl)propionamide derivatives as potent opioid receptor ligands. Bioorganic and Medicinal Chemistry, 2015, 23, 6185-6194.	1.4	2
49	Discovery of Novel Potent and Selective Agonists at the Melanocortin-3 Receptor. Journal of Medicinal Chemistry, 2015, 58, 9773-9778.	2.9	20
50	Modification of amphipathic non-opioid dynorphin A analogues for rat brain bradykinin receptors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 30-33.	1.0	11
51	Design, synthesis, and biological and docking studies of novel epipodophyllotoxin–chalcone hybrids as potential anticancer agents. MedChemComm, 2015, 6, 94-104.	3.5	23
52	Blockade of non-opioid excitatory effects of spinal Dynorphin A at bradykinin receptors. Receptors & Clinical Investigation, 2015, 2, .	0.9	2
53	Cu(I)–Pd(II)-Catalyzed Cycloaddition–Fusion of 1-Iodoalkynes and Azides: One-Pot Synthesis of Fused Tricyclic Heterosystems. Synlett, 2014, 25, 2463-2466.	1.0	16
54	Regioselective N/C-Heterocyclization of Allenylindium Bromide Across Aryl Azides: One-Pot Synthesis of 5-Methyl-1,2,3-triazoles. Synlett, 2014, 25, 1859-1862.	1.0	12

#	Article	IF	CITATIONS
55	Investigational peptide and peptidomimetic μ and δ opioid receptor agonists in the relief of pain. Expert Opinion on Investigational Drugs, 2014, 23, 227-241.	1.9	25
56	Fentanyl-related compounds and derivatives: current status and future prospects for pharmaceutical applications. Future Medicinal Chemistry, 2014, 6, 385-412.	1.1	191
57	Entrap and release of Phe–Phe nanotubes in sol–gel derived silicate matrix: study through nanosilver interaction. Journal of Sol-Gel Science and Technology, 2014, 72, 534-542.	1.1	10
58	Synthesis and evaluation of bivalent ligands for binding to the human melanocortin-4 receptor. Bioorganic and Medicinal Chemistry, 2014, 22, 6360-6365.	1.4	16
59	Novel Cyclic Biphalin Analogue with Improved Antinociceptive Properties. ACS Medicinal Chemistry Letters, 2014, 5, 1032-1036.	1.3	30
60	Structure–activity relationships of non-opioid [des-Arg7]-dynorphin A analogues for bradykinin receptors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4976-4979.	1.0	11
61	Discovery of Amphipathic Dynorphin A Analogues to Inhibit the Neuroexcitatory Effects of Dynorphin A through Bradykinin Receptors in the Spinal Cord. Journal of the American Chemical Society, 2014, 136, 6608-6616.	6.6	27
62	The development of bifunctional ligands as novel therapeutics for chronic pain (1061.5). FASEB Journal, 2014, 28, 1061.5.	0.2	0
63	Biological Active Analogues of the Opioid Peptide Biphalin: Mixed α/β ³ -Peptides. Journal of Medicinal Chemistry, 2013, 56, 3419-3423.	2.9	32
64	Truncation of the peptide sequence in bifunctional ligands with mu and delta opioid receptor agonist and neurokinin 1 receptor antagonist activities. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4975-4978.	1.0	11
65	Novel fentanyl-based dual μ/Î-opioid agonists for the treatment of acute and chronic pain. Life Sciences, 2013, 93, 1010-1016.	2.0	44
66	An Unusual Conformation of γ-Melanocyte-Stimulating Hormone Analogues Leads to a Selective Human Melanocortin 1 Receptor Antagonist for Targeting Melanoma Cells. Biochemistry, 2013, 52, 752-764.	1.2	10
67	Design of Peptide and Peptidomimetic Ligands with Novel Pharmacological Activity Profiles. Annual Review of Pharmacology and Toxicology, 2013, 53, 557-580.	4.2	51
68	Synthesis and evaluation of cholecystokinin trimers: A multivalent approach to pancreatic cancer detection and treatment. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2422-2425.	1.0	6
69	Effect of anchoring 4-anilidopiperidines to opioid peptides. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3434-3437.	1.0	8
70	Chiral Effect of a Phe Residue in Position 3 of the Dmt ¹ - <scp>1</scp> (or) Tj ETQq0 0 0 rgBT /Overloc Letters, 2013, 4, 656-659.	k 10 Tf 50 1.3) 147 Td (<s 3</s
71	Adventures in peptides and science with students! the joys of research. Biopolymers, 2013, 100, 127-131.	1.2	0

72TY032, a potent opioid agonist/neurokinin 1 antagonist produces analgesia without motor impairment
or sedation. FASEB Journal, 2013, 27, 887.3.0.20

#	Article	IF	CITATIONS
73	Differential contribution of brainâ€regionâ€specific melanocortin 5 receptor to physical activity levels in lean vs. obesityâ€prone rats. FASEB Journal, 2013, 27, 935.1.	0.2	0
74	Heterobivalent ligands target cell-surface receptor combinations in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21295-21300.	3.3	59
75	Thio-Claisen Rearrangement Used in Preparing Anti-β-Functionalized γ,Î′-Unsaturated Amino Acids: Scope and Limitations. Journal of Organic Chemistry, 2012, 77, 1289-1300.	1.7	27
76	Strategies for Asymmetric Synthesis of Amino Acids with γ,δ-Unsaturation. Organic Preparations and Procedures International, 2012, 44, 222-255.	0.6	13
77	High Affinity Binding of Dynorphin Aâ€(2–13) at the Bradykininâ€2 Receptor. FASEB Journal, 2012, 26, 836.2.	0.2	0
78	Biological evaluation of cyclized cystine knot peptides targeting human melanocortin receptors. FASEB Journal, 2012, 26, 1001.2.	0.2	0
79	Cell-Specific Targeting by Heterobivalent Ligands. Bioconjugate Chemistry, 2011, 22, 1270-1278.	1.8	44
80	Discovery of a Potent and Efficacious Peptide Derivative for Î′Ĵ¼ Opioid Agonist/Neurokinin 1 Antagonist Activity with a 2â€2,6â€2-Dimethyl- <scp>l</scp> -Tyrosine: In vitro, In vivo, and NMR-Based Structural Studies. Journal of Medicinal Chemistry, 2011, 54, 2029-2038.	2.9	30
81	Design, Synthesis, and Biological Studies of Efficient Multivalent Melanotropin Ligands: Tools toward Melanoma Diagnosis and Treatment. Journal of Medicinal Chemistry, 2011, 54, 7375-7384.	2.9	38
82	Fluorescent and Lanthanide Labeling for Ligand Screens, Assays, and Imaging. Methods in Molecular Biology, 2011, 716, 89-126.	0.4	21
83	Recyclization reactions of 1-alkylpyrimidinium salts. Heterocyclic Communications, 2011, 17, 129-133.	0.6	2
84	Development of Melanoma-Targeted Polymer Micelles by Conjugation of a Melanocortin 1 Receptor (MC1R) Specific Ligand. Journal of Medicinal Chemistry, 2011, 54, 8078-8084.	2.9	42
85	Backbone Alignment Modeling of the Structure–Activity Relationships of Opioid Ligands. Journal of Chemical Information and Modeling, 2011, 51, 1151-1164.	2.5	11
86	Development of Potent μ and δOpioid Agonists with High Lipophilicity. Journal of Medicinal Chemistry, 2011, 54, 382-386.	2.9	48
87	Conformational study on cyclic melanocortin ligands and new insight into their binding mode at the MC4 receptor. European Journal of Medicinal Chemistry, 2011, 46, 3721-3733.	2.6	12
88	Design of novel melanocortin receptor ligands: Multiple receptors, complex pharmacology, the challenge. European Journal of Pharmacology, 2011, 660, 88-93.	1.7	20
89	Utilize conjugated melanotropins for the earlier diagnosis and treatment of melanoma. European Journal of Pharmacology, 2011, 660, 188-193.	1.7	4
90	Novel peptide ligands with dual acting pharmacophores designed for the pathophysiology of neuropathic pain. Brain Research, 2011, 1395, 1-11.	1.1	32

#	Article	IF	CITATIONS
91	New potent biphalin analogues containing p-fluoro-l-phenylalanine at the 4,4′ positions and non-hydrazine linkers. Amino Acids, 2011, 40, 1503-1511.	1.2	30
92	Cyclic lactam hybrid α-MSH/Agouti-related protein (AGRP) analogues with nanomolar range binding affinities at the human melanocortin receptors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3099-3102.	1.0	8
93	Approaches to the rational design of selective melanocortin receptor antagonists. Expert Opinion on Drug Discovery, 2011, 6, 543-557.	2.5	8
94	Synthesis and Crystallographic Study of N′-(1-benzylpiperidin-4-yl)acetohydrazide. Journal of Chemical Crystallography, 2010, 40, 961-964.	0.5	1
95	Synthesis and characterization of a Eu-DTPA-PEGO-MSH(4) derivative for evaluation of binding of multivalent molecules to melanocortin receptors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2489-2492.	1.0	10
96	Novel anti-β-functionalized γ,δ-unsaturated amino acids via a thio–Claisen rearrangement. Tetrahedron Letters, 2010, 51, 3518-3520.	0.7	10
97	Optimization of time-resolved fluorescence assay for detection of europium–tetraazacyclododecyltetraacetic acid-labeled ligand–receptor interactions. Analytical Biochemistry, 2010, 398, 15-23.	1.1	25
98	Design and synthesis of trivalent ligands targeting opioid, cholecystokinin, and melanocortin receptors for the treatment of pain. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4080-4084.	1.0	19
99	Biological and Conformational Evaluation of Bifunctional Compounds for Opioid Receptor Agonists and Neurokinin 1 Receptor Antagonists Possessing Two Penicillamines. Journal of Medicinal Chemistry, 2010, 53, 5491-5501.	2.9	21
100	Multiple <i>N</i> -Methylation of MT-II Backbone Amide Bonds Leads to Melanocortin Receptor Subtype hMC1R Selectivity: Pharmacological and Conformational Studies. Journal of the American Chemical Society, 2010, 132, 8115-8128.	6.6	96
101	Use of plasmon waveguide resonance (PWR) spectroscopy for examining binding, signaling and lipid domain partitioning of membrane proteins. Life Sciences, 2010, 86, 569-574.	2.0	20
102	Proton sharing and transfer in some zwitterionic compounds based on 4-oxo-4-((1-phenethylpiperidin-4-yl)(phenyl)amino)alcanoic acids. CrystEngComm, 2010, 12, 3651.	1.3	8
103	Sex-specific Mediation of Opioid-induced Hyperalgesia by the Melanocortin-1 Receptor. Anesthesiology, 2010, 112, 181-188.	1.3	57
104	Solid-Phase Synthetic Strategy and Bioevaluation of a Labeled δ-Opioid Receptor Ligand Dmt-Tic-Lys for <i>In Vivo</i> Imaging. Organic Letters, 2009, 11, 2479-2482.	2.4	28
105	Enhanced targeting with heterobivalent ligands. Molecular Cancer Therapeutics, 2009, 8, 2356-2365.	1.9	48
106	PREFACE TO THE MEMORIAL ISSUE HONORING PROFESSOR CHOH HAO LI. International Journal of Peptide and Protein Research, 2009, 32, 417-417.	0.1	0
107	Synthesis of β and γ-fluorenylmethyl esters of respectively Nα-Boc-L-aspartic acid and Nα-Boc-L-glutamic acid. International Journal of Peptide and Protein Research, 2009, 35, 215-218.	0.1	9
108	Design, synthesis, and biological activities of a potent and selective α-melanotropin antagonist. International Journal of Peptide and Protein Research, 2009, 35, 228-234.	0.1	32

#	Article	IF	CITATIONS
109	The biological activity and metabolic stability of peptidic bifunctional compounds that are opioid receptor agonists and neurokinin-1 receptor antagonists with a cystine moiety. Bioorganic and Medicinal Chemistry, 2009, 17, 7337-7343.	1.4	30
110	Organic Chemistry and Biology: Chemical Biology Through the Eyes of Collaboration. Journal of Organic Chemistry, 2009, 74, 9245-9264.	1.7	27
111	Improving Metabolic Stability by Glycosylation: Bifunctional Peptide Derivatives That Are Opioid Receptor Agonists and Neurokinin 1 Receptor Antagonists. Journal of Medicinal Chemistry, 2009, 52, 5164-5175.	2.9	44
112	Melanotropins as Drugs for the Treatment of Obesity and Other Feeding Disorders: Potential and Problems. Current Topics in Medicinal Chemistry, 2009, 9, 554-563.	1.0	17
113	Novel Bifunctional Peptides as Opioid Agonists and NK-1 Antagonists. Advances in Experimental Medicine and Biology, 2009, 611, 537-538.	0.8	5
114	Peptide and Non-Peptide Mimetics Utilize Different Pathways for Signal Transduction. Advances in Experimental Medicine and Biology, 2009, 611, 305-306.	0.8	0
115	Solid-Phase Synthesis of Heterobivalent Ligands Targeted to Melanocortin and Cholecystokinin Receptors. International Journal of Peptide Research and Therapeutics, 2008, 14, 293-300.	0.9	29
116	Opioid and melanocortin receptors: Do they have overlapping pharmacophores?. Biopolymers, 2008, 90, 433-438.	1.2	10
117	Heterobivalent Ligands Crosslink Multiple Cellâ€6urface Receptors: The Human Melanocortinâ€4 and δâ€Opioid Receptors. Angewandte Chemie - International Edition, 2008, 47, 1685-1688.	7.2	68
118	Structure–activity relationships of bifunctional cyclic disulfide peptides based on overlapping pharmacophores at opioid and cholecystokinin receptors. Peptides, 2008, 29, 1413-1423.	1.2	21
119	Design and Microwave-Assisted Synthesis of Novel Macrocyclic Peptides Active at Melanocortin Receptors: Discovery of Potent and Selective hMC5R Receptor Antagonists. Journal of Medicinal Chemistry, 2008, 51, 2701-2707.	2.9	55
120	A Structure–Activity Relationship Study and Combinatorial Synthetic Approach of C-Terminal Modified Bifunctional Peptides That Are í̇́/î́¼ Opioid Receptor Agonists and Neurokinin 1 Receptor Antagonists. Journal of Medicinal Chemistry, 2008, 51, 1369-1376.	2.9	48
121	The Importance of Micelle-Bound States for the Bioactivities of Bifunctional Peptide Derivatives for δ/μ Opioid Receptor Agonists and Neurokinin 1 Receptor Antagonists. Journal of Medicinal Chemistry, 2008, 51, 6334-6347.	2.9	35
122	Gene expression profiling-based identification of cell-surface targets for developing multimeric ligands in pancreatic cancer. Molecular Cancer Therapeutics, 2008, 7, 3071-3080.	1.9	25
123	New Paradigms and Tools in Drug Design for Pain and Addiction. , 2008, , 477-494.		0
124	Contribution of the Conserved Amino Acids of the Melanocortin-4 Receptor in d-[Nle4,Phe7]-α-Melanocyte-stimulating Hormone Binding and Signaling. Journal of Biological Chemistry, 2007, 282, 21712-21719.	1.6	45
125	Design, Synthesis and Biological Evaluation of Ligands Selective for the Melanocortin-3 Receptor. Current Topics in Medicinal Chemistry, 2007, 7, 1107-1119.	1.0	24
126	Design, Synthesis and Biological Evaluation of Ligands Selective for the Melanocortin-3 Receptor. Current Topics in Medicinal Chemistry, 2007, 7, 1085-1097.	1.0	9

#	Article	IF	CITATIONS
127	Further structure–activity studies of lactam derivatives of MT-II and SHU-9119: Their activity and selectivity at human melanocortin receptors 3, 4, and 5. Peptides, 2007, 28, 1191-1196.	1.2	32
128	Plasmon-waveguide resonance (PWR) spectroscopy for directly viewing rates of GPCR/G-protein interactions and quantifying affinities. Current Opinion in Pharmacology, 2007, 7, 507-514.	1.7	28
129	Design, Synthesis, and Biological Evaluation of Novel Bifunctional C-Terminal-Modified Peptides for δ/μ Opioid Receptor Agonists and Neurokinin-1 Receptor Antagonists. Journal of Medicinal Chemistry, 2007, 50, 2779-2786.	2.9	60
130	Development of Novel Enkephalin Analogues that Have Enhanced Opioid Activities at Both μ and δOpioid Receptors. Journal of Medicinal Chemistry, 2007, 50, 5528-5532.	2.9	41
131	Design, Synthesis, and Validation of a Branched Flexible Linker for Bioactive Peptides. Journal of Organic Chemistry, 2007, 72, 1675-1680.	1.7	20
132	Synthesis and Evaluation of Bivalent NDP-α-MSH(7) Peptide Ligands for Binding to the Human Melanocortin Receptor 4 (hMC4R). Bioconjugate Chemistry, 2007, 18, 1101-1109.	1.8	54
133	Novel selective human melanocortin-3 receptor ligands: Use of the 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one (Aba) scaffold. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2492-2498.	1.0	31
134	Understanding the structural requirements of 4-anilidopiperidine analogues for biological activities at μ and δopioid receptors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2161-2165.	1.0	26
135	Professor Mac E. Hadley: Creative scientist, superb teacher, dynamic collaborator, and wonderful friend. General and Comparative Endocrinology, 2007, 151, 358-360.	0.8	Ο
136	Melanocortin receptors, melanotropic peptides and penile erection. Current Topics in Medicinal Chemistry, 2007, 7, 1098-1106.	1.0	29
137	Rigid Linkers for Bioactive Peptides. Bioconjugate Chemistry, 2006, 17, 1545-1550.	1.8	25
138	New paradigms and tools in drug design for pain and addiction. AAPS Journal, 2006, 8, E450-E460.	2.2	23
139	Structureâ^'Activity Relationships of Bifunctional Peptides Based on Overlapping Pharmacophores at Opioid and Cholecystokinin Receptors. Journal of Medicinal Chemistry, 2006, 49, 2868-2875.	2.9	43
140	Design and Synthesis of Novel Hydrazide-Linked Bifunctional Peptides as δſμ Opioid Receptor Agonists and CCK-1/CCK-2 Receptor Antagonists. Journal of Medicinal Chemistry, 2006, 49, 1773-1780.	2.9	39
141	Development of Cyclic Î ³ -MSH Analogues with Selective hMC3R Agonist and hMC3R/hMC5R Antagonist Activities. Journal of Medicinal Chemistry, 2006, 49, 1946-1952.	2.9	38
142	Synthesis and biological activity of the first cyclic biphalin analogues. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 367-372.	1.0	39
143	Design, synthesis, and biological evaluation of a new class of small molecule peptide mimetics targeting the melanocortin receptors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5462-5467.	1.0	37
144	Synthesis and evaluation of 3-aminopropionyl substituted fentanyl analogues for opioid activity. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4946-4950.	1.0	27

#	Article	IF	CITATIONS
145	Design, synthesis, and validation of rigid linkers for bioactive peptides. Tetrahedron Letters, 2005, 46, 7589-7592.	0.7	10
146	Synthesis and biological evaluation of new biphalin analogues with non-hydrazine linkers. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2471-2475.	1.0	25
147	Development of a lanthanide-based assay for detection of receptor–ligand interactions at the δ-opioid receptor. Analytical Biochemistry, 2005, 343, 299-307.	1.1	47
148	Design of cyclic and other templates for potent and selective peptide α-MSH analogues. Current Opinion in Chemical Biology, 2005, 9, 352-358.	2.8	39
149	Parallel synthesis and biological evaluation of different sizes of bicyclo[2,3]-Leu-enkephalin analogues. Biopolymers, 2005, 80, 151-163.	1.2	12
150	Novel 3D Pharmacophore of α-MSH/γ-MSH Hybrids Leads to Selective Human MC1R and MC3R Analoguesâ€. Journal of Medicinal Chemistry, 2005, 48, 1839-1848.	2.9	38
151	Role of NK-1 neurotransmission in opioid-induced hyperalgesia. Pain, 2005, 116, 276-288.	2.0	157
152	Design of novel melanotropin agonists and antagonists with high potency and selectivity for human melanocortin receptors. Peptides, 2005, 26, 1481-1485.	1.2	36
153	Hitting multiple targets with multimeric ligands. Expert Opinion on Therapeutic Targets, 2004, 8, 565-586.	1.5	96
154	Lanthanide-based time-resolved fluorescence of in cyto ligand–receptor interactions. Analytical Biochemistry, 2004, 330, 242-250.	1.1	67
155	Novel targeting strategy based on multimeric ligands for drug delivery and molecular imaging: homooligomers of \hat{I}_{\pm} -MSH. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 211-215.	1.0	65
156	Large scale enantiomeric synthesis, purification, and characterization of ω-unsaturated amino acids via a Gly-Ni(II)-BPB-complex. Tetrahedron, 2004, 60, 8233-8243.	1.0	30
157	A simple and efficient synthesis of an Asp-Gly dipeptide mimetic. Tetrahedron Letters, 2004, 45, 3245-3247.	0.7	10
158	Real Time Differentiation of G-Protein Coupled Receptor (GPCR) Agonist and Antagonist by Two Photon Fluorescence Laser Microscopy. Journal of the American Chemical Society, 2004, 126, 7160-7161.	6.6	30
159	Solution-phase chemical shift anisotropy as a promising tool to probe intermolecular interactions and peptide bond geometry: a case study on15N-labeled Nî±-t-Boc-L-valine. Magnetic Resonance in Chemistry, 2003, 41, 828-836.	1.1	2
160	Solution structures of cyclic melanocortin agonists and antagonists by NMR. Biopolymers, 2003, 71, 696-716.	1.2	53
161	Exploring the Stereostructural Requirements of Peptide Ligands for the Melanocortin Receptors. Annals of the New York Academy of Sciences, 2003, 994, 12-20.	1.8	25
162	Stereoselective Synthesis of Novel Dipeptide β-Turn Mimetics Targeting Melanocortin Peptide Receptors. Organic Letters, 2003, 5, 3115-3118.	2.4	34

#	Article	IF	CITATIONS
163	Structureâ^'Activity Relationships of γ-MSH Analogues at the Human Melanocortin MC3, MC4, and MC5 Receptors. Discovery of Highly Selective hMC3R, hMC4R, and hMC5R Analogues. Journal of Medicinal Chemistry, 2003, 46, 4965-4973.	2.9	27
164	Peptide Science:Â Exploring the Use of Chemical Principles and Interdisciplinary Collaboration for Understanding Life Processesâ€. Journal of Medicinal Chemistry, 2003, 46, 4215-4231.	2.9	46
165	Structureâ^'Activity Relationships of Novel Cyclic α-MSH/β-MSH Hybrid Analogues That Lead to Potent and Selective Ligands for the Human MC3R and Human MC5R. Journal of Medicinal Chemistry, 2003, 46, 3728-3733.	2.9	30
166	Expression-driven reverse engineering of targeted imaging and therapeutic agents. Expert Opinion on Therapeutic Targets, 2003, 7, 137-139.	1.5	19
167	The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4867-4872.	3.3	469
168	(2S,3R)β-Methyl-2′,6′-dimethyltyrosine-l-tetrahydroisoquinoline-3-carboxylic acid [(2S,3R)TMT-l-Tic-OH] Is a Potent, Selective δ-Opioid Receptor Antagonist in Mouse Brain. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 683-688.	1.3	10
169	Design and synthesis of peptide antagonists and inverse agonists for G protein-coupled receptors. Methods in Enzymology, 2002, 343, 49-72.	0.4	8
170	Discovery and Development of Novel Melanogenic Drugs. Pharmaceutical Biotechnology, 2002, 11, 575-595.	0.3	18
171	Design of nonpeptides from peptide ligands for peptide receptors. Methods in Enzymology, 2002, 343, 91-123.	0.4	12
172	Design of peptide agonists. Methods in Enzymology, 2002, 343, 73-91.	0.4	3
173	Structureâ^'Activity Studies of the Melanocortin Peptides:Â Discovery of Potent and Selective Affinity Antagonists for thehMC3 andhMC4 Receptorsâ€. Journal of Medicinal Chemistry, 2002, 45, 5287-5294.	2.9	72
174	Design and Synthesis of Highly Potent and Selective Melanotropin Analogues of SHU9119 Modified at Position 6. Biochemical and Biophysical Research Communications, 2002, 292, 1075-1080.	1.0	54
175	Designing peptide receptor agonists and antagonists. Nature Reviews Drug Discovery, 2002, 1, 847-858.	21.5	310
176	Practical and Efficient Synthesis of Orthogonally Protected Constrained 4-Guanidinoprolinesâ€. Journal of Organic Chemistry, 2001, 66, 1038-1042.	1.7	61
177	Solid-Phase Synthesis of O-Linked Glycopeptide Analogues of Enkephalin. Journal of Organic Chemistry, 2001, 66, 2327-2342.	1.7	125
178	Mutation W284L of the human delta opioid receptor reveals agonist specific receptor conformations for G protein activation. Life Sciences, 2001, 68, 2233-2242.	2.0	18
179	Synthesis of 4-cis-Phenyl-I-proline via Hydrogenolysis. Journal of Organic Chemistry, 2001, 66, 3593-3596.	1.7	36
180	A New Approach to Search for the Bioactive Conformation of Glucagon:Â Positional Cyclization Scanning. Journal of Medicinal Chemistry, 2001, 44, 3109-3116.	2.9	32

#	Article	IF	CITATIONS
181	Development of Potent Truncated Glucagon Antagonists. Journal of Medicinal Chemistry, 2001, 44, 1372-1379.	2.9	25
182	Michael Addition Reactions between Chiral Ni(II) Complex of Glycine and 3-(trans-Enoyl)oxazolidin-2-ones. A Case of Electron Donorâ^Acceptor Attractive Interaction-Controlled Face Diastereoselectivity1. Journal of Organic Chemistry, 2001, 66, 1339-1350.	1.7	67
183	Design in Topographical Space of Peptide and Peptidomimetic Ligands That Affect Behavior. A Chemist's Glimpse at the Mindâ^'Body Problem. Accounts of Chemical Research, 2001, 34, 389-397.	7.6	123
184	Assessment of Stereoselectivity of Trimethylphenylalanine Analogues of δ-Opioid [D-Pen2,D-Pen5]-Enkephalin. Journal of Neurochemistry, 2001, 75, 424-435.	2.1	38
185	A three-dimensional model of the δ-opioid pharmacophore: Comparative molecular modeling of peptide and nonpeptide ligands. Biopolymers, 2000, 53, 565-580.	1.2	40
186	Differential down-regulation of the human δ-opioid receptor by SNC80 and [d-Pen2,d-Pen5]enkephalin. European Journal of Pharmacology, 2000, 387, R11-R13.	1.7	19
187	Differential role of melanocortins in mediating leptin's central effects on feeding and reproduction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R50-R59.	0.9	71
188	Increased Eumelanin Expression and Tanning is Induced by a Superpotent Melanotropin [Nle4-d-Phe7]-α-MSH in Humans¶. Photochemistry and Photobiology, 2000, 72, 526.	1.3	48
189	Effect of an alpha-melanocyte stimulating hormone analog on penile erection and sexual desire in men with organic erectile dysfunction. Urology, 2000, 56, 641-646.	0.5	136
190	4-Alkoxy-2-hydroxybenzaldehyde (AHB):  A Versatile Aldehyde Linker for Solid-Phase Synthesis of C-Terminal Modified Peptides and Peptidomimeticsâ€. Organic Letters, 2000, 2, 1787-1790.	2.4	20
191	Rational Design of Highly Diastereoselective, Organic Base-Catalyzed, Room-Temperature Michael Addition Reactions1. Journal of Organic Chemistry, 2000, 65, 6688-6696.	1.7	79
192	(S)- or (R)-3-(E-Enoyl)-4-phenyl-1,3- oxazolidin-2-ones:  Ideal Michael Acceptors To Afford a Virtually Complete Control of Simple and Face Diastereoselectivity in Addition Reactions with Glycine Derivatives. Organic Letters, 2000, 2, 747-750.	2.4	81
193	Design and Synthesis of Conformationally Constrained Glucagon Analogues§. Journal of Medicinal Chemistry, 2000, 43, 1714-1722.	2.9	19
194	d-Amino Acid Scan of γ-Melanocyte-Stimulating Hormone: Importance of Trp8on Human MC3 Receptor Selectivity. Journal of Medicinal Chemistry, 2000, 43, 4998-5002.	2.9	128
195	Role of central melanocortins in endotoxin-induced anorexia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R864-R871.	0.9	64
196	Biological activity of fragments and analogues of the potent dimeric opioid peptide, biphalin. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 2763-2766.	1.0	44
197	(2S,3R)TMT-l-Tic-OH is a potent inverse agonist at the human δ-opioid receptor. European Journal of Pharmacology, 1999, 380, R9-R10.	1.7	23
198	Conformation-activity relationships of opioid peptides with selective activities at opioid receptors. Biopolymers, 1999, 51, 391-410.	1.2	91

#	Article	IF	CITATIONS
199	Structure and dynamics of ?-MSH using DRISM integral equation theory and stochastic dynamics. , 1999, 50, 255-272.		17
200	Exploring the Structureâ^'Activity Relationships of [1-(4-tert-Butyl-3â€~-hydroxy)benzhydryl-4-benzylpiperazine] (SL-3111), A High-Affinity and Selective δ-Opioid Receptor Nonpeptide Agonist Ligandâ€. Journal of Medicinal Chemistry, 1999, 42, 5359-5368.	2.9	29
201	Title is missing!. International Journal of Peptide Research and Therapeutics, 1998, 5, 117-120.	0.1	0
202	Conformational analysis of β-methyl-para-nitrophenylalanine stereoisomers of cyclo[D-Pen2, D-Pen5]enkephalin by NMR spectroscopy and conformational energy calculations. , 1998, 38, 141-156.		15
203	Design and bioactivities of melanotropic peptide agonists and antagonists: Design based on a conformationally constrained somatostatin template. International Journal of Peptide Research and Therapeutics, 1998, 5, 117-120.	0.1	4
204	Consequences of cis-amide bond simulation in opioid peptides. International Journal of Peptide Research and Therapeutics, 1998, 5, 437-440.	0.1	1
205	Peptide and peptidomimetic libraries. Molecular Biotechnology, 1998, 9, 205-223.	1.3	24
206	Orphanin-FQ/nociceptin: Lack of antinociceptive, hyperalgesic or allodynic effects in acute thermal or mechanical tests following intracerebroventricular or intrathecal administration to mice or rats. European Journal of Pain, 1998, 2, 267-278.	1.4	25
207	De Novo Design, Synthesis, and Biological Activities of High-Affinity and Selective Non-Peptide Agonists of the δ-Opioid Receptor. Journal of Medicinal Chemistry, 1998, 41, 4767-4776.	2.9	67
208	Substitution of the Side-Chain-Constrained Amino Acids β-Methyl-2â€~,6â€~-Dimethyl-4â€~-Methoxytyrosine in Position 2 of a Bicyclic Oxytocin Analogue Provides Unique Insights into the Bioactive Topography of Oxytocin Antagonists. Journal of the American Chemical Society, 1998, 120, 7393-7394.	6.6	23
209	SYNTHETIC MELANOTROPIC PEPTIDE INITIATES ERECTIONS IN MEN WITH PSYCHOGENIC ERECTILE DYSFUNCTION: DOUBLE-BLIND, PLACEBO CONTROLLED CROSSOVER STUDY. Journal of Urology, 1998, 160, 389-393.	0.2	171
210	Prevention of reflex natriuresis after acute unilateral nephrectomy by melanocortin receptor antagonists. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R931-R938.	0.9	16
211	Systemic α-MSH suppresses LPS fever via central melanocortin receptors independently of its suppression of corticosterone and IL-6 release. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R524-R530.	0.9	37
212	Biological and Conformational Examination of Stereochemical Modifications Using the Template Melanotropin Peptide, Ac-Nle-c[Asp-His-Phe-Arg-Trp- Ala-Lys]-NH2, on Human Melanocortin Receptors. Journal of Medicinal Chemistry, 1997, 40, 1738-1748.	2.9	66
213	The Role of Phenylalanine at Position 6 in Glucagon's Mechanism of Biological Action:  Multiple Replacement Analogues of Glucagon. Journal of Medicinal Chemistry, 1997, 40, 2555-2562.	2.9	22
214	Cyclic Enkephalin Analogues with Exceptional Potency and Selectivity for δ-Opioid Receptors1. Journal of Medicinal Chemistry, 1997, 40, 3957-3962.	2.9	42
215	Solution Conformations of Potent Bicyclic Antagonists of Oxytocin by Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics Simulations. Journal of the American Chemical Society, 1997, 119, 5833-5846.	6.6	21
216	Peptide Targeting and Delivery across the Bloodâ~'Brain Barrier Utilizing Synthetic Triglyceride Esters:Â Design, Synthesis, and Bioactivity. Bioconjugate Chemistry, 1997, 8, 434-441.	1.8	25

#	Article	IF	CITATIONS
217	Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature, 1997, 385, 165-168.	13.7	1,765
218	The stereochemical requirements of the novel δ-opioid selective dipeptide antagonist TMT-Tic. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 3049-3052.	1.0	37
219	Skin Pigmentation and Pharmacokinetics of Melanotan-I in Humans. , 1997, 18, 259-269.		36
220	Design of peptides, proteins, and peptidomimetics in chi space. , 1997, 43, 219-266.		319
221	Synthesis and biological properties of βâ€MePhe ³ analogues of deltorphin I and dermenkephalin: influence of biased X ¹ of Phe ³ residues on peptide recognition for δâ€opioid receptors. Chemical Biology and Drug Design, 1997, 50, 48-54.	1.2	15
222	Structureâ€activity studies of hydrophobic amino acid replacements at positions 9, 11 and 16 of glucagon. Chemical Biology and Drug Design, 1997, 49, 293-299.	1.2	4
223	Probing the Stereochemical Requirements for Receptor Recognition of δ Opioid Agonists through Topographic Modifications in Position 1. Journal of the American Chemical Society, 1996, 118, 7280-7290.	6.6	63
224	Effects of Modifications of Residues in Position 3 of Dynorphin A(1â^'11)-NH2on κ Receptor Selectivity and Potency. Journal of Medicinal Chemistry, 1996, 39, 2456-2460.	2.9	31
225	Evaluation of Melanotan-II, a superpotent cyclic melanotropic peptide in a pilot phase-I clinical study. Life Sciences, 1996, 58, 1777-1784.	2.0	121
226	Topographical Amino Acid Substitution in Position 10 of Glucagon Leads to Antagonists/Partial Agonists with Greater Binding Differences. Journal of Medicinal Chemistry, 1996, 39, 2449-2455.	2.9	27
227	Design, Synthesis, and Biological Activities of Cyclic Lactam Peptide Analogues of Dynorphin A(1â~11)-NH21. Journal of Medicinal Chemistry, 1996, 39, 1136-1141.	2.9	31
228	Design considerations and computer modeling related to the development of molecular scaffolds and peptide mimetics for combinatorial chemistry. Molecular Diversity, 1996, 2, 46-56.	2.1	8
229	Conformational restriction of Tyr and Phe side chains in opioid peptides: Information about preferred and bioactive side-chain topology. , 1996, 38, 1-12.		73
230	Melanotropic peptide receptors: membrane markers of human melanoma cells. Experimental Dermatology, 1996, 5, 325-333.	1.4	33
231	Passage of a δâ€Opioid Receptor Selective Enkephalin, [<scp>d</scp> â€Penicillamine ^{2,5}]Enkephalin, Across the Bloodâ€Brain and the Bloodâ€Cerebrospinal Fluid Barriers. Journal of Neurochemistry, 1996, 66, 1289-1299.	2.1	57
232	Lipid membrane permeability of modified c[Dâ€Pen ² , Dâ€pen ⁵]enkephalin peptides. International Journal of Peptide and Protein Research, 1996, 48, 87-86.	0.1	13
233	[des His1, des Phe6, Glu9]glucagon amide: A newly designed "pure―glucagon antagonist. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 1849-1852.	1.0	26
234	Stereoselective total synthesis of topographically constrained designer amino acids: 2′, 6′-dimethyl-β-methyltyrosines. Tetrahedron, 1995, 51, 1033-1054.	1.0	73

#	Article	IF	CITATIONS
235	The Melanotropic Peptide, [Nle4, d-Phe7]α-MSH, Stimulates Human Melanoma Tyrosinase Activity and Inhibits Cell Proliferation. Pigment Cell & Melanoma Research, 1995, 8, 314-323.	4.0	26
236	Topographical modification of melanotropin peptide analogs with .betamethyltryptophan isomers at position 9 leads to differential potencies and prolonged biological activities. Journal of Medicinal Chemistry, 1995, 38, 4720-4729.	2.9	50
237	A New Strategy for the Synthesis of Four Individual Isomers of β-Methylphenylalanine. Synthetic Communications, 1995, 25, 57-61.	1.1	18
238	A topographical model of μâ€opioid and brain somatostatin receptor selective ligands NMR and molecular dynamics studies. International Journal of Peptide and Protein Research, 1995, 46, 265-278.	0.1	21
239	Molecular biology and pharmacology of cloned opioid receptors 1. FASEB Journal, 1995, 9, 516-525.	0.2	204
240	Trp ²⁸⁴ of the Human δ Opioid Receptor is Required for SNC121 Binding but Not Binding of pCl-DPDPE, Deltorphin II or Naltrindole. Analgesia (Elmsford, N Y), 1995, 1, 539-542.	0.5	12
241	Asymmetric synthesis of unusual amino acids: Synthesis of optically pure isomers of N-indole- (2-mesitylenesulfonyl)-β-methyltryptophan. Tetrahedron, 1994, 50, 2391-2404.	1.0	58
242	Prediction of the conformational requirements for binding to the ?-opioid receptor and its subtypes. I. Novel ?-helical cyclic peptides and their role in receptor selectivity. Biopolymers, 1994, 34, 1231-1241.	1.2	18
243	X-ray Structure of [D-Pen2,D-Pen5]enkephalin, a Highly Potent, .delta. Opioid Receptor-Selective Compound: Comparisons with Proposed Solution Conformations. Journal of the American Chemical Society, 1994, 116, 7523-7531.	6.6	72
244	Multivalent Melanotropic Peptide and Fluorescent Macromolecular Conjugates: New Reagents for Characterization of Melanotropin Receptors. Bioconjugate Chemistry, 1994, 5, 591-601.	1.8	34
245	Delta opioid receptor selective ligands; DPLPEâ€deltorphin chimeric peptide analogues ^{â€} . International Journal of Peptide and Protein Research, 1994, 44, 80-84.	0.1	8
246	Characterization of linear and cyclic glucagon analogs by fast atom bombardment mass spectrometry. Biological Mass Spectrometry, 1993, 22, 267-276.	0.5	0
247	Conformational and topographical considerations in the design of biologically active peptides. Biopolymers, 1993, 33, 1073-1082.	1.2	143
248	Ab initio IGLO study of thesyn/anti dependence of the13C NMR chemical shifts in simple amides. Magnetic Resonance in Chemistry, 1993, 31, 75-79.	1.1	15
249	Improved 2D inverse proton detected C,H correlation NMR techniques for the total assignment of carbon resonances of a highly delta opioid receptor agonist peptide. Magnetic Resonance in Chemistry, 1993, 31, 231-237.	1.1	15
250	Conformational analysis of four β-methylphenylalanine stereoisomers in a bioactive peptide by z-filtered relay NMR spectroscopy. Magnetic Resonance in Chemistry, 1993, 31, 1072-1076.	1.1	16
251	Design, Synthesis, and Conformation of Superpotent and Prolonged Acting Melanotropins. Annals of the New York Academy of Sciences, 1993, 680, 51-63.	1.8	73
252	Melanotropic Peptides for Therapeutic and Cosmetic Tanning of the Skin. Annals of the New York Academy of Sciences, 1993, 680, 424-439.	1.8	37

#	Article	IF	CITATIONS
253	Multiple release of equimolar amounts of peptides from a polymeric carrier using orthogonal linkageâ€cleavage chemistry. International Journal of Peptide and Protein Research, 1993, 41, 201-203.	0.1	59
254	Syntheses, opioid binding affinities, and potencies of dynorphin A analogues substituted in positions 1, 6, 7, 8 and 10. International Journal of Peptide and Protein Research, 1993, 42, 411-419.	0.1	32
255	Solution conformations of the peptide backbone for DPDPE and its βâ€MePhe ⁴ â€substituted analogs. International Journal of Peptide and Protein Research, 1993, 41, 347-361.	0.1	25
256	Chapter 18 Strategies in the development of peptide antagonists. Progress in Brain Research, 1992, 92, 215-224.	0.9	33
257	Antinociceptive interactions of opioid delta receptor agonists with morphine in mice: Supra- and sub-additivity. Life Sciences, 1992, 50, 1535-1541.	2.0	52
258	Topographical requirements for delta opioid ligands: Common structural features of dermenkephalin and deltorphin. Life Sciences, 1992, 51, 1025-1032.	2.0	80
259	Reduced peptide bond cyclic somatostatin based opioid octapeptides Synthesis, conformational properties and pharmacological characterization. International Journal of Peptide and Protein Research, 1992, 39, 401-414.	0.1	17
260	Conformationally biased analogs of oxytocin. International Journal of Peptide and Protein Research, 1992, 40, 148-151.	0.1	17
261	A CONVENIENT SYNTHESIS OF (2S)-2-AMINO-3-PHENYLPROPANOL. Organic Preparations and Procedures International, 1991, 23, 396-397.	0.6	7
262	Topographically designed analogs of [cyclic] [D-Pen2,D-Pen5]enkephalin. Journal of Medicinal Chemistry, 1991, 34, 1823-1830.	2.9	115
263	Designing peptide and protein ligands for biological receptors. Current Opinion in Biotechnology, 1991, 2, 599-605.	3.3	16
264	Protein-Kinase C Mediates MCH Signal Transduction in Teleost, Synbranchus marmoratus, Melanocytes. Pigment Cell & Melanoma Research, 1991, 4, 66-70.	4.0	29
265	Biological Activities of Melanotropic Peptide Fatty Acid Conjugates. Pigment Cell & Melanoma Research, 1991, 4, 180-185.	4.0	12
266	Topographical requirements for ?-selective opioid peptides. Biopolymers, 1991, 31, 941-955.	1.2	125
267	Oxytocin antagonists with changes in the Asn ⁵ position shed light on hormoneâ€oxytocin receptor interactions. International Journal of Peptide and Protein Research, 1991, 38, 32-37.	0.1	4
268	Synthetic glucagon antagonists and partial agonists. International Journal of Peptide and Protein Research, 1991, 38, 131-138.	0.1	21
269	1H-nmr assignments and conformational studies of melanin concentrating hormone in water using two-dimensional nmr. Biopolymers, 1990, 30, 1291-1295.	1.2	4
270	Bicyclization of a weak oxytocin agonist produces a highly potent oxytocin antagonist. Journal of the American Chemical Society, 1990, 112, 3110-3113.	6.6	40

#	Article	IF	CITATIONS
271	Cholecystokinin analogues with high affinity and selectivity for brain membrane receptors*. International Journal of Peptide and Protein Research, 1990, 35, 566-573.	0.1	43
272	Isolation and structure elucidation of bovine pineal arginine vasopressin: arginine vasotocin not identified. International Journal of Peptide and Protein Research, 1990, 36, 109-121.	0.1	8
273	Conformationally restricted analogs of oxytocin; stabilization of inhibitory conformation ^{â€} . International Journal of Peptide and Protein Research, 1990, 36, 321-330.	0.1	23
274	Conformation of two somatostatin analogues in aqueous solution. Study by NMR methods and circular dichroism. FEBS Journal, 1989, 185, 371-381.	0.2	16
275	Recent developments in the design of receptor specific opioid peptides. Medicinal Research Reviews, 1989, 9, 343-401.	5.0	235
276	Structural characteristics of two highly selective opioid peptides. BioEssays, 1989, 10, 58-61.	1.2	4
277	Ionic Requirements for Melanin Concentrating Hormone (MCH) Actions on Teleost Poecilia reticulata Melanophores. Pigment Cell & Melanoma Research, 1989, 2, 213-217.	4.0	8
278	Linear and Cyclic α-Melanotropin [4–10]-Fragment Analogues That Exhibit Superpotency and Residual Activity. Pigment Cell & Melanoma Research, 1989, 2, 478-484.	4.0	28
279	Potent and prolonged-acting cyclic lactam analogs of .alphamelanotropin: design based on molecular dynamics. Journal of Medicinal Chemistry, 1989, 32, 2555-2561.	2.9	324
280	Design of a new class of superpotent cyclic .alphamelanotropins based on quenched dynamic simulations. Journal of the American Chemical Society, 1989, 111, 3413-3416.	6.6	183
281	Designing Molecules: Specific Peptides for Specific Receptors. Epilepsia, 1989, 30, S42-50; discussion S64-8.	2.6	13
282	Conformational analysis of enkephalin analogs contaIntng a disulfide bond Models for delta―and muâ€receptor opioid agonists. International Journal of Peptide and Protein Research, 1989, 34, 88-96.	0.1	32
283	The conformational properties of the delta opioid peptide [cyclic] [D-pen2,D-pen5]enkephalin in aqueous solution determined by NMR and energy minimization calculations. Journal of the American Chemical Society, 1988, 110, 3351-3359.	6.6	125
284	Design and synthesis of somatostatin analogs with topographical properties that lead to highly potent and specific .mu. opioid receptor antagonists with greatly reduced binding at somatostatin receptors. Journal of Medicinal Chemistry, 1988, 31, 2170-2177.	2.9	131
285	?-Melanocyte-stimulating hormone structure-activity studies: Comparative analysis of melanotropic and CNS bioactivities. Synapse, 1988, 2, 288-292.	0.6	4
286	The Michael Addition of Sulfur Anions to β,β-Substituted Nα-Formyl-α, β-Dehydroamino Acid Esters. Synthetic Communications, 1988, 18, 531-543.	1.1	7
287	Conformation of <scp>d</scp> â€Pheâ€Cysâ€Tyrâ€ <scp>d</scp> â€Trpâ€Lysâ€Thrâ€Penâ€Thrâ€NH _{2(CTPâ€NH₂), a highly selective muâ€opioid antagonist peptide, by ¹H and ¹³C n.m.r International Journal of Peptide and Protein Research, 1988, 31, 109-115.}	> 0.1	15
288	Proton n.m.r. investigation of conformational influence of penicillamine residues on the disulfide ring system of opioid receptor selective Somatostatin derivatives. International Journal of Peptide and Protein Research, 1988, 31, 192-200.	0.1	18

#	Article	IF	CITATIONS
289	Cholecystokinic activity of <i>N</i> αâ€hydroxysulfonylâ€{Nle ^{28,31}]CCK _{26â€33} analogues modified at the <i>C</i> â€ŧerminal residue. International Journal of Peptide and Protein Research, 1988, 31, 514-519.	0.1	7
290	Importance of the <i>C</i> â€ŧerminal αâ€helical structure for glucagon's biological activity. International Journal of Peptide and Protein Research, 1988, 32, 468-475.	0.1	14
291	Long-Acting Oxytocin Antagonists: Effects of 2-D-Stereoisomer Substitution on Antagonistic Potency and Duration of Action. Experimental Biology and Medicine, 1987, 185, 187-192.	1.1	16
292	Implications of the X-ray structure of deamino-oxytocin to agonist/antagonist-receptor interactions. Trends in Pharmacological Sciences, 1987, 8, 336-339.	4.0	45
293	alphaMelanotropin: the minimal active sequence in the frog skin bioassay. Journal of Medicinal. Chemistry, 1987, 30, 2126-2130.	2.9	257
294	Proton n.m.r. spectroscopic evidence for sulfurâ€eromatic interactions in peptides. International Journal of Peptide and Protein Research, 1987, 29, 40-45.	0.1	17
295	Analogs of oxytocin containing a modified peptide bond*. International Journal of Peptide and Protein Research, 1987, 30, 318-322.	0.1	6
296	Receptor binding and adenylate cyclase activities of glucagon analogs modified in the N-terminal region. Biochemistry, 1986, 25, 1650-1656.	1.2	27
297	Importance of the 10-13 region of glucagon for its receptor interactions and activation of adenylate cyclase. Biochemistry, 1986, 25, 3833-3839.	1.2	42
298	D-lsomeric replacements within the 6-9 core sequence of ac-[Nle4]-?-MSH4-11-NH2: A topological model for the solution conformation of ?-melanotropin. Biopolymers, 1986, 25, 2029-2042.	1.2	30
299	Activation of two signal-transduction systems in hepatocytes by glucagon. Nature, 1986, 323, 68-71.	13.7	386
300	Long-term and residual melanotropin-stimulated tyrosinase activity in S91 melanoma cells is density dependent. In Vitro Cellular & Developmental Biology, 1986, 22, 75-81.	1.0	16
301	Comparative biological activities of potent analogues of αâ€melanotropin. International Journal of Peptide and Protein Research, 1986, 27, 685-694.	0.1	4
302	Melanin concentrating hormone (MCH) effects on teleost (Chrysiptera cyanea) melanophores. The Journal of Experimental Zoology, 1985, 235, 175-180.	1.4	45
303	[NLE ⁴ , D-PHE ⁷]-\$aL-MSH: A Superpotent Melanotropin That "Irreversibly― Activates Melanoma Tyrosinase. Endocrine Research, 1985, 11, 157-170.	0.6	32
304	Enzymological studies of melanotropins. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1984, 78, 519-524.	0.2	30
305	Design of Peptide Superagonists and Antagonists. ACS Symposium Series, 1984, , 9-27.	0.5	27
306	Comparative biological activities of potent activeâ€site analogues of αâ€melanotropin. Effect of tyrosine substitution at positionâ€4. International Journal of Peptide and Protein Research, 1984, 23, 621-629.	0.1	5

#	Article	IF	CITATIONS
307	Conformational and dynamic considerations in the design of peptide hormone analogs. Biopolymers, 1983, 22, 517-530.	1.2	23
308	Differentiation of the structural features of melanotropins important for biological potency and prolonged activity <i>in vitro</i> . International Journal of Peptide and Protein Research, 1983, 22, 313-324.	0.1	29
309	Pharmacological, conformational and dynamic properties of cycloleucineâ€2 analogues of oxytocin and [1â€penicillamine]oxytocin. International Journal of Peptide and Protein Research, 1983, 21, 24-34.	0.1	14
310	Conformational restrictions of biologically active peptides via amino acid side chain groups. Life Sciences, 1982, 31, 189-199.	2.0	391
311	Structure-conformation-activity studies of glucagon and semi-synthetic glucagon analogs. Molecular and Cellular Biochemistry, 1982, 44, 49-64.	1.4	62
312	Quantitative determination of amino acid racemization in heat-alkali-treated melanotropins: Implications for peptide hormone structure-function studies. Analytical Biochemistry, 1981, 116, 303-311.	1.1	25
313	Synthesis of S-benzyl-DL-[1-13C]cysteine and its incorporation into oxytocin and [8-arginlne]vasopressin and related compounds by total synthesis. Separation of diastekeoisomers by partition chromatography and HPLC. Journal of Labelled Compounds and Radiopharmaceuticals, 1980, 17. 801-812.	0.5	7
314	SYNTHESIS OF PROTECTED SECRETIN _{16–27} ON A MERRIFIELD RESIN. International Journal of Peptide and Protein Research, 1980, 15, 271-278.	0.1	2
315	SYNTHESIS, PHARMACOLOGICAL, CONFORMATIONAL, AND DYNAMIC STUDIES OF THE POTENT HORMONE ANTAGONISTS [1â€PENICILLAMINE, 4â€THREONINE]â€OXYTOCIN AND [1â€PENICILLAMINE, 2â€PHENYLALANINI 4â€THREONINE] â€OXYTOCIN. International Journal of Peptide and Protein Research, 1980, 16, 372-381.	E,0.1	20
316	THE SEPARATION OF PEPTIDE HORMONE DIASTEREOISOMERS BY REVERSE PHASE HIGH PRESSURE LIQUID CHROMATOGRAPHY. International Journal of Peptide and Protein Research, 1979, 13, 12-21.	0.1	51
317	Semisynthetic glucagon derivatives for structure-function studies. Metabolism: Clinical and Experimental, 1976, 25, 1323-1325.	1.5	19