

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2101282/publications.pdf Version: 2024-02-01

O(M)

#	Article	IF	CITATIONS
1	Laboratory Evolution of Enantiocomplementary Candida antarctica Lipase B Mutants with Broad Substrate Scope. Journal of the American Chemical Society, 2013, 135, 1872-1881.	13.7	134
2	Basic Ionic Liquid as Catalysis and Reaction Medium:  A Novel and Green Protocol for the Markovnikov Addition of N-Heterocycles to Vinyl Esters, Using a Task-Specific Ionic Liquid, [bmIm]OH. Journal of Organic Chemistry, 2006, 71, 3991-3993.	3.2	126
3	Stereodivergent Protein Engineering of a Lipase To Access All Possible Stereoisomers of Chiral Esters with Two Stereocenters. Journal of the American Chemical Society, 2019, 141, 7934-7945.	13.7	106
4	Amperometric glucose biosensor based on silver nanowires and glucose oxidase. Sensors and Actuators B: Chemical, 2013, 176, 9-14.	7.8	103
5	A fast and highly efficient protocol for Michael addition of N-heterocycles to α,β-unsaturated compound using basic ionic liquid [bmIm]OH as catalyst and green solvent. Tetrahedron, 2007, 63, 986-990.	1.9	96
6	A layer-by-layer assembled and carbon nanotubes/gold nanoparticles-based bienzyme biosensor for cholesterol detection. Sensors and Actuators B: Chemical, 2013, 181, 575-583.	7.8	87
7	Enzymatic Promiscuity for Organic Synthesis and Cascade Process. Current Organic Chemistry, 2010, 14, 1966-1988.	1.6	81
8	Lightâ€Driven Kinetic Resolution of αâ€Functionalized Carboxylic Acids Enabled by an Engineered Fatty Acid Photodecarboxylase. Angewandte Chemie - International Edition, 2019, 58, 8474-8478.	13.8	77
9	One-step construction of biosensor based on chitosan–ionic liquid–horseradish peroxidase biocomposite formed by electrodeposition. Biosensors and Bioelectronics, 2008, 24, 29-34.	10.1	74
10	Promiscuous Acylases-Catalyzed Markovnikov Addition of N-Heterocycles to Vinyl Esters in Organic Media. Advanced Synthesis and Catalysis, 2006, 348, 487-492.	4.3	73
11	<i>Candida antarctica</i> Lipase B (CALâ€B)â€Catalyzed Carbonâ€Sulfur Bond Addition and Controllable Selectivity in Organic Media. Advanced Synthesis and Catalysis, 2008, 350, 1959-1962.	4.3	70
12	Artificial cysteine-lipases with high activity and altered catalytic mechanism created by laboratory evolution. Nature Communications, 2019, 10, 3198.	12.8	66
13	Candida antarctica lipase B-catalyzed the unprecedented three-component Hantzsch-type reaction of aldehyde with acetamide and 1,3-dicarbonyl compounds in non-aqueous solvent. Tetrahedron, 2011, 67, 2689-2692.	1.9	64
14	Penicillin G acylase catalyzed Markovnikov addition of allopurinol to vinyl ester. Chemical Communications, 2005, , 2348.	4.1	62
15	A Basic Ionic Liquid as Catalyst and Reaction Medium: A Rapid and Simple Procedure for Aza-Michael Addition Reactions. European Journal of Organic Chemistry, 2007, 2007, 1798-1802.	2.4	61
16	One step electrochemically deposited nanocomposite film of chitosan–carbon nanotubes–gold nanoparticles for carcinoembryonic antigen immunosensor application. Talanta, 2011, 85, 1980-1985.	5.5	57
17	Promiscuous zinc-dependent acylase-mediated carbon–carbon bond formation in organic media. Chemical Communications, 2007, , 2078-2080.	4.1	55
18	A method for determination of glucose by an amperometric bienzyme biosensor based on silver nanocubes modified Au electrode. Sensors and Actuators B: Chemical, 2014, 194, 71-78.	7.8	55

#	Article	IF	CITATIONS
19	Michael addition of imidazole with acrylates catalyzed by alkaline protease from Bacillus subtilis in organic media. Biotechnology Letters, 2004, 26, 525-528.	2.2	53
20	A sensor for detection of carcinoembryonic antigen based on the polyaniline-Au nanoparticles and gap-based interdigitated electrode. Sensors and Actuators B: Chemical, 2017, 239, 874-882.	7.8	53
21	Light-driven decarboxylative deuteration enabled by a divergently engineered photodecarboxylase. Nature Communications, 2021, 12, 3983.	12.8	53
22	A green protocol for synthesis of benzo-fused N,S-, N,O- and N,N-heterocycles in water. Green Chemistry, 2008, 10, 972.	9.0	52
23	Hydrolase-catalyzed Michael addition of imidazoles to acrylic monomers in organic medium. Journal of Biotechnology, 2006, 121, 330-337.	3.8	49
24	Hepatic-targeting microcapsules construction by self-assembly of bioactive galactose-branched polyelectrolyte for controlled drug release system. Journal of Colloid and Interface Science, 2008, 317, 477-484.	9.4	48
25	Focused rational iterative site-specific mutagenesis (FRISM). Methods in Enzymology, 2020, 643, 225-242.	1.0	48
26	Hydrolase-catalyzed Michael addition of 1,3-dicarbonyl compounds to α,β-unsaturated compounds in organic solvent. Journal of Molecular Catalysis B: Enzymatic, 2007, 49, 50-54.	1.8	46
27	Engineering Fatty Acid Photodecarboxylase to Enable Highly Selective Decarboxylation of <i>trans</i> Fatty Acids. Angewandte Chemie - International Edition, 2021, 60, 20695-20699.	13.8	40
28	Enzymatic synthesis of optical pure β-nitroalcohols by combining d-aminoacylase-catalyzed nitroaldol reaction and immobilized lipase PS-catalyzed kinetic resolution. Green Chemistry, 2011, 13, 2359.	9.0	39
29	Markedly enhancing lipase-catalyzed synthesis of nucleoside drugs' ester by using a mixture system containing organic solvents and ionic liquid. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3769-3771.	2.2	37
30	Bioactive Galactose-Branched Polyelectrolyte Multilayers and Microcapsules:Â Self-Assembly, Characterization, and Biospecific Lectin Adsorption. Langmuir, 2006, 22, 8458-8464.	3.5	35
31	Oneâ€Pot Synthesis of Spirooxazino Derivatives <i>via</i> Enzymeâ€Initiated Multicomponent Reactions. Advanced Synthesis and Catalysis, 2014, 356, 999-1005.	4.3	35
32	A single-enzyme, two-step, one-pot synthesis of N-substituted imidazole derivatives containing a glucose branch via combined acylation/Michael addition reactionElectronic supplementary information (ESI) available: experimental section. See http://www.rsc.org/suppdata/cc/b4/b405796a/. Chemical Communications, 2004, , 2006.	4.1	32
33	Diastereoselective enzymatic synthesis of highly substituted 3,4-dihydropyridin-2-ones via domino Knoevenagel condensation–Michael addition–intramolecular cyclization. Tetrahedron, 2011, 67, 9736-9740.	1.9	32
34	N-Methylimidazole significantly improves lipase-catalysed acylation of ribavirin. Chemical Communications, 2007, , 295-297.	4.1	31
35	Enantiocomplementary decarboxylative hydroxylation combining photocatalysis and whole-cell biocatalysis in a one-pot cascade process. Green Chemistry, 2019, 21, 1907-1911.	9.0	31
36	Promiscuous acylase-catalyzed aza-Michael additions of aromatic N-heterocycles in organic solvent. Tetrahedron Letters, 2007, 48, 6100-6104.	1.4	30

#	Article	IF	CITATIONS
37	Enzymatic enantioselective aldol reactions of isatin derivatives with cyclic ketones under solvent-free conditions. Biochimie, 2014, 101, 156-160.	2.6	30
38	Regiospecific alkaline protease-catalyzed divinyl acyl transesterifications of primary hydroxyl groups of mono- and di-saccharides in pyridine. Carbohydrate Research, 2004, 339, 2059-2067.	2.3	29
39	Promiscuous enzyme-catalyzed regioselective Michael addition of purine derivatives to α,β-unsaturated carbonyl compounds in organic solvent. Tetrahedron, 2009, 65, 2531-2536.	1.9	29
40	Stereoselectivity-Tailored, Metal-Free Hydrolytic Dynamic Kinetic Resolution of Morita–Baylis–Hillman Acetates Using an Engineered Lipase–Organic Base Cocatalyst. ACS Catalysis, 2017, 7, 4542-4549.	11.2	29
41	Preparation, characterization and controlled release of liver-targeting nanoparticles from the amphiphilic random copolymer. Polymer, 2008, 49, 4769-4775.	3.8	27
42	Biocatalysts for cascade reaction: porcine pancreas lipase (PPL)-catalyzed synthesis of bis(indolyl)alkanes. Amino Acids, 2013, 45, 937-945.	2.7	27
43	Bovine serum albumin-catalyzed one-pot synthesis of 2-aminothiophenes via Gewald reaction. Journal of Molecular Catalysis B: Enzymatic, 2013, 95, 29-35.	1.8	26
44	Exploiting Cofactor Versatility to Convert a FADâ€Dependent Baeyer–Villiger Monooxygenase into a Ketoreductase. Angewandte Chemie - International Edition, 2019, 58, 14499-14503.	13.8	26
45	Recent Advances in Photobiocatalysis for Selective Organic Synthesis. Organic Process Research and Development, 2022, 26, 1900-1913.	2.7	25
46	Novel hepatomaâ€targeting micelles based on chemoenzymatic synthesis and selfâ€assembly of galactoseâ€functionalized ribavirinâ€containing amphiphilic random copolymer. Journal of Polymer Science Part A, 2008, 46, 2734-2744.	2.3	24
47	Lipase/Acetamide atalyzed Carbon arbon Bond Formations: A Mechanistic View. Advanced Synthesis and Catalysis, 2013, 355, 864-868.	4.3	24
48	Amperometric sensor for ascorbic acid based on a glassy carbon electrode modified with gold-silver bimetallic nanotubes in a chitosan matrix. Mikrochimica Acta, 2014, 181, 231-238.	5.0	23
49	Two lipase-catalyzed sequential synthesis of drug derivatives in organic media. Enzyme and Microbial Technology, 2008, 43, 375-380.	3.2	22
50	Promiscuous Zincâ€Dependent Acylaseâ€Mediated Oneâ€Pot Synthesis of Monosaccharide ontaining Pyrimidine Derivatives in Organic Medium. Advanced Synthesis and Catalysis, 2009, 351, 1833-1841.	4.3	22
51	Multifunctional poly(amine-ester)-type hyperbranched polymers: lipase-catalyzed green synthesis, characterization, biocompatibility, drug loading and anticancer activity. Polymer Chemistry, 2013, 4, 3480.	3.9	22
52	Diastereoselective synthesis of spirooxindole derivatives viaÂbiocatalytic domino reaction. Tetrahedron, 2015, 71, 616-621.	1.9	22
53	One-pot construction of spirooxindole backbone via biocatalytic domino reaction. Tetrahedron Letters, 2017, 58, 2923-2926.	1.4	22
54	Lightâ€Driven Kinetic Resolution of αâ€Functionalized Carboxylic Acids Enabled by an Engineered Fatty Acid Photodecarboxylase. Angewandte Chemie, 2019, 131, 8562-8566.	2.0	21

#	Article	IF	CITATIONS
55	Controllable selective enzymatic synthesis of N-acyl and O-acylpropranolol vinyl esters and preparation of polymeric prodrug of propranolol. Journal of Molecular Catalysis B: Enzymatic, 2007, 44, 1-7.	1.8	20
56	Directed evolution of lipase A from Bacillus subtilis for the preparation of enantiocomplementary sec-alcohols. Green Synthesis and Catalysis, 2021, 2, 290-294.	6.8	20
57	Graft copolymerization of water-soluble monomers containing quaternary ammonium group on poly(vinyl alcohol) using ceric ions. Journal of Applied Polymer Science, 2005, 97, 2186-2191.	2.6	19
58	Controllable synthesis of polymerizable ester and amide prodrugs of acyclovir by enzyme in organic solvent. Bioorganic and Medicinal Chemistry, 2006, 14, 3377-3382.	3.0	19
59	Synthesis of monosaccharide derivatives and polymeric prodrugs of 5-fluorouridine via two-step enzymatic or chemo-enzymatic highly regioselective strategy. Journal of Molecular Catalysis B: Enzymatic, 2008, 54, 76-82.	1.8	19
60	Lipase-initiated one-pot synthesis of spirooxazino derivatives: redesign of multicomponent reactions to expand substrates scope and application potential. Tetrahedron, 2016, 72, 3318-3323.	1.9	19
61	Highly Focused Libraryâ€Based Engineering of <i>Candida antarctica</i> Lipase B with (<i>S</i>)â€Selectivity Towards <i>sec</i> â€Alcohols. Advanced Synthesis and Catalysis, 2019, 361, 126-134.	4.3	19
62	Enantiocomplementary C–H Bond Hydroxylation Combining Photoâ€Catalysis and Wholeâ€Cell Biocatalysis in a Oneâ€Pot Cascade Process. European Journal of Organic Chemistry, 2020, 2020, 821-825.	2.4	19
63	A Single Lipaseâ€Catalysed Oneâ€Pot Protocol Combining Aminolysis Resolution and Azaâ€Michael Addition: An Easy and Efficient Way to Synthesise βâ€Amino Acid Esters. European Journal of Organic Chemistry, 2015, 2015, 5393-5401.	2.4	18
64	Novel designed polymer–acyclovir conjugates with linker ontrolled drug release and hepatoma cell targeting. Journal of Polymer Science Part A, 2008, 46, 117-126.	2.3	17
65	Enzymatic Synthesis of Amoxicillin via a One-pot Enzymatic Hydrolysis and Condensation Cascade Process in the Presence of Organic Co-solvents. Applied Biochemistry and Biotechnology, 2010, 160, 2026-2035.	2.9	17
66	Chemoenzymatic dynamic kinetic resolution of $\hat{l}\pm$ -trifluoromethylated amines: influence of substitutions on the reversed stereoselectivity. RSC Advances, 2013, 3, 9820.	3.6	17
67	Label-free okadaic acid detection using growth of gold nanoparticles in sensor gaps as a conductive tag. Biomedical Microdevices, 2017, 19, 33.	2.8	17
68	Amphiphilic mPEG-block-poly (profen amide-co-esters) copolymers: One pot biocatalytic synthesis, self-assembly in water and drug release. Polymer, 2011, 52, 5479-5485.	3.8	16
69	Intramolecular Stereoselective Stetter Reaction Catalyzed by Benzaldehyde Lyase. Angewandte Chemie - International Edition, 2021, 60, 9326-9329.	13.8	16
70	Title is missing!. Biotechnology Letters, 2001, 23, 1981-1985.	2.2	15
71	Regioselective enzymatic acylation of ribavirin to give potential multifunctional derivatives. Biotechnology Letters, 2005, 27, 717-720.	2.2	15
72	Highly selective anti-Markovnikov addition of thiols to vinyl ethers under solvent- and catalyst-free conditions. Tetrahedron Letters, 2007, 48, 8815-8818.	1.4	15

#	Article	IF	CITATIONS
73	Basic Law Controlling the Growth Regime of Layerâ€byâ€Layer Assembled Polyelectrolyte Multilayers. Macromolecular Chemistry and Physics, 2008, 209, 175-183.	2.2	15
74	Thermal treatment of galactose-branched polyelectrolyte microcapsules to improve drug delivery with reserved targetability. International Journal of Pharmaceutics, 2008, 357, 22-31.	5.2	15
75	One-pot bienzymatic cascade combining decarboxylative aldol reaction and kinetic resolution to synthesize chiral β-hydroxy ketone derivatives. RSC Advances, 2016, 6, 76829-76837.	3.6	15
76	Effect of Additives on the Selectivity and Reactivity of Enzymes. Chemical Record, 2017, 17, 90-121.	5.8	15
77	Regioselective monoacylation of cyclomaltoheptaose at the C-2 secondary hydroxyl groups by the alkaline protease from Bacillus subtilis in nonaqueous media. Carbohydrate Research, 2004, 339, 1279-1283.	2.3	14
78	Chemo-enzymatic synthesis of disaccharide-branched copolymers with high molecular weight. Carbohydrate Polymers, 2005, 60, 357-362.	10.2	14
79	Glucose-functionalized multidrug-conjugating nanoparticles based on amphiphilic terpolymer with enhanced anti-tumorous cell cytotoxicity. International Journal of Pharmaceutics, 2013, 441, 291-298.	5.2	14
80	Dynamic Double Kinetic Resolution of Amines and Alcohols under the Cocatalysis of Raney Nickel/ <i>Candida antarctica</i> Lipase B: From Concept to Application. European Journal of Organic Chemistry, 2014, 2014, 2917-2923.	2.4	14
81	Candida antarctica lipase B-catalyzed synthesis of polyesters: starting from ketones via a tandem BVO/ROP process. RSC Advances, 2014, 4, 8533.	3.6	14
82	Stereoselective Transformations of αâ€Trifluoromethylated Ketoximes to Optically Active Amines by Enzyme–Nanometal Cocatalysis: Synthesis of (<i>S</i>)â€Inhibitor of Phenylethanolamine Nâ€Methyltransferase. ChemCatChem, 2014, 6, 2129-2133.	3.7	14
83	"Top―or "bottom―switches of a cyclohexanone monooxygenase controlling the enantioselectivity of the sandwiched substrate. Chemical Communications, 2019, 55, 2198-2201.	4.1	14
84	Fabrication of novel hepatoma-targeting microdisks by hydrogen bond-assisted self-assembly of an azacitidine-conjugating amphiphilic random copolymer. Acta Biomaterialia, 2010, 6, 511-518.	8.3	13
85	New view of acylase promiscuity: An extended study on the acylase-catalyzed Markovnikov addition. Journal of Molecular Catalysis B: Enzymatic, 2011, 73, 85-89.	1.8	13
86	Catalystâ€free Multicomponent Synthesis of <i>β</i> â€Mercapto Diketones in Water. Chinese Journal of Chemistry, 2011, 29, 1856-1862.	4.9	13
87	Solvent-Free Lipase-Catalyzed Synthesis: Unique Properties of Enantiopure <scp>d</scp> - and <scp>l</scp> - Polyaspartates and Their Complexation. Biomacromolecules, 2016, 17, 362-370.	5.4	13
88	Regioselective synthesis of cyclodextrin mono-substituted conjugates of non-steroidal anti-inflammatory drugs at C-2 secondary hydroxyl by protease in non-aqueous media. Bioorganic and Medicinal Chemistry, 2005, 13, 3667-3671.	3.0	12
89	Multidrug nanoparticles based on novel random copolymer containing cytarabine and fluorodeoxyuridine. Journal of Colloid and Interface Science, 2010, 349, 153-158.	9.4	12
90	Imidazoleâ€catalyzed Threeâ€component Cascade Reaction for the Facile Synthesis of Highly Substituted 3,4â€Dihydropyridinâ€2â€one Derivatives. Chinese Journal of Chemistry, 2012, 30, 2343-2348.	4.9	12

#	Article	IF	CITATIONS
91	Controllable regioselective enzymatic synthesis of polymerizable 5′-O-vinyl- and 3′-O-vinyl-nucleoside analogues in acetone. Biotechnology Letters, 2004, 26, 1019-1022.	2.2	11
92	Two-step synthesis of structure-diverse d-galactose conjugates and polymeric prodrugs of floxuridine via controllable regioselective enzymatic acylation of 3′- or 5′-OH group of floxuridine. Enzyme and Microbial Technology, 2008, 42, 414-420.	3.2	11
93	A two-step, one-pot enzymatic synthesis of ampicillin from penicillin G potassium salt. Journal of Molecular Catalysis B: Enzymatic, 2009, 58, 208-211.	1.8	11
94	A Combination of Computational and Experimental Approaches to Investigate the Binding Behavior of <i>B.sub</i> Lipase A Mutants with Substrate <i>p</i> NPP. Molecular Informatics, 2011, 30, 359-367.	2.5	11
95	Modulating the synthetase activity of penicillin G acylase in organic media by addition of N-methylimidazole: Using vinyl acetate as activated acyl donor. Journal of Biotechnology, 2011, 153, 111-115.	3.8	11
96	A Nonenzymatic Hydrogen Peroxide Sensor Based on Silver Nanowires and Chitosan Film. Electroanalysis, 2012, 24, 1771-1777.	2.9	11
97	Synthesis of polymeric prodrugs of chlorphenesin with saccharide branches by chemo-enzymatic regioselective strategy. Polymer, 2007, 48, 2595-2604.	3.8	10
98	Facile synthesis of novel mutual derivatives of nucleosides and pyrimidines by regioselectively chemo-enzymatic protocol. Bioorganic and Medicinal Chemistry, 2008, 16, 5181-5188.	3.0	10
99	Stereoselective synthesis of spiro[5.5]undecane derivatives via biocatalytic [5+1] double Michael additions. Journal of Molecular Catalysis B: Enzymatic, 2013, 97, 18-22.	1.8	10
100	Tandem dynamic kinetic resolution and enzymatic polycondensation to synthesize mPEGâ€functionalized poly(amineâ€ <i>co</i> â€ester)â€type chiral prodrugs. Journal of Polymer Science Part A, 2013, 51, 2049-2057.	2.3	10
101	The mutagenesis of a single site for enhancing or reversing the enantio- or regiopreference of cyclohexanone monooxygenases. Chemical Communications, 2020, 56, 9356-9359.	4.1	10
102	Electronic Effectâ€Guided Rational Design of <i>Candida antarctica</i> Lipase B for Kinetic Resolution Towards Diarylmethanols. Advanced Synthesis and Catalysis, 2021, 363, 1867-1872.	4.3	10
103	Enzyme Catalyzed Synthesis of Some Vinyl Drug Esters in Organic Medium. Preparative Biochemistry and Biotechnology, 2004, 34, 97-107.	1.9	9
104	Chemo-enzymatic synthesis and sustained release of optically active polymeric prodrugs of chlorphenesin. Polymer, 2008, 49, 3444-3449.	3.8	9
105	Efficient enzymatic synthesis of ampicillin in organic media. Journal of Molecular Catalysis B: Enzymatic, 2008, 54, 13-18.	1.8	9
106	Design and <i>in vitro</i> Biodegradation of Novel Hepatocyteâ€Targetable (Galactose) Tj ETQq0 0 0 rgBT /Over 2009, 210, 1052-1060.	lock 10 Tf 2.2	50 147 Td (I 9
107	Regioselective synthesis of amphiphilic metoprolol–saccharide conjugates by enzymatic strategy in organic media. Process Biochemistry, 2011, 46, 123-127.	3.7	9
108	Lipaseâ€catalyzed synthesis of polymeric prodrugs of nonsteroidal antiâ€inflammatory drugs. Journal of	2.6	9

Applied Polymer Science, 2013, 128, 3271-3279.

#	Article	IF	CITATIONS
109	Two Enzyme Cooperatively Catalyzed Tandem Polymerization for the Synthesis of Polyester Containing Chiral (<i>R</i>)―or (<i>S</i>)â€ŀbuprofen Pendants. Macromolecular Rapid Communications, 2014, 35, 1788-1794.	3.9	9
110	Antitumor gemcitabine conjugated micelles from amphiphilic comb-like random copolymers. Colloids and Surfaces B: Biointerfaces, 2016, 146, 707-715.	5.0	9
111	Lipase-catalyzed synthesis of chiral poly(ester amide)s with an alternating sequence of hydroxy acid and <scp>l</scp> / <scp>d</scp> -aspartate units. Polymer Chemistry, 2018, 9, 1412-1420.	3.9	9
112	Substrate Engineering in Lipase-Catalyzed Selective Polymerization of <scp>d</scp> -/ <scp>l</scp> -Aspartates and Diols to Prepare Helical Chiral Polyester. Biomacromolecules, 2021, 22, 918-926.	5.4	9
113	Rational Design of Biocatalytic Deuteration Platform of Aldehydes. ACS Catalysis, 2021, 11, 13348-13354.	11.2	9
114	Rational design of fatty acid photodecarboxylase enables the efficient decarboxylation of medium- and short-chain fatty acids for the production of gasoline bio-alkanes. Molecular Catalysis, 2022, 524, 112261.	2.0	9
115	Highly Anomer- and Regio-selective Transesterification Catalyzed by Alkaline Protease fromBacillus subtilisin Organic Media. Chemistry Letters, 2004, 33, 94-95.	1.3	8
116	Enzymatic synthesis of metronidazole esters and their monosaccharide ester derivatives. Enzyme and Microbial Technology, 2006, 39, 1258-1263.	3.2	8
117	Chemo-Enzymatic Synthesis of Raffinose-Branched Polyelectrolytes and Self-Assembly Application in Microcapsules. Macromolecular Bioscience, 2006, 6, 78-83.	4.1	8
118	Anhydrous tert-pentanol as a novel media for the efficient enzymatic synthesis of amoxicillin. Enzyme and Microbial Technology, 2008, 42, 601-607.	3.2	8
119	<i>L</i> â€Lysine/imidazoleâ€catalyzed Multicomponent Cascade Reaction: Facile Synthesis of C5â€substituted 3â€Methylcyclohexâ€2â€enones. Chinese Journal of Chemistry, 2013, 31, 997-1002.	4.9	8
120	Lipaseâ€Catalyzed Doubly Enantioselective Ringâ€Opening Resolution between Alcohols and Lactones: Synthesis of Chiral Hydroxyl Esters with Two Stereogenic Centers. ChemCatChem, 2014, 6, 3448-3454.	3.7	8
121	Novel supramolecular assemblies of repulsive DNA–anionic porphyrin complexes based on covalently modified multi-walled carbon nanotubes and cyclodextrins. RSC Advances, 2015, 5, 21153-21160.	3.6	8
122	Mapping inhibitor response to the in-frame deletions, insertions and duplications of epidermal growth factor receptor (EGFR) in non-small cell lung cancer. Journal of Receptor and Signal Transduction Research, 2016, 36, 37-44.	2.5	8
123	Enzymatic Synthesis and Stereocomplex Formation of Chiral Polyester Containing Long-Chain Aliphatic Alcohol Backbone. Biomacromolecules, 2019, 20, 3584-3591.	5.4	8
124	Enantiocomplementary Chiral Polyhydroxyenoate: Chemoenzymatic Synthesis and Helical Structure Control. ACS Macro Letters, 2019, 8, 1188-1193.	4.8	8
125	Double Enzyme-Catalyzed One-Pot Synthesis of Enantiocomplementary Vicinal Fluoro Alcohols. Organic Letters, 2020, 22, 5446-5450.	4.6	8
126	Immobilization of penicillin G acylase on a composite carrier with a biocompatible microenvironment of chemical Technology and Biotechnology, 2008, 83, 1710-1716.	3.2	7

#	Article	IF	CITATIONS
127	Unexpected three-component domino synthesis of pyridin-2-ones catalyzed by promiscuous acylase in non-aqueous solvent. Biochimie, 2013, 95, 1462-1465.	2.6	7
128	Enzymatic multicomponent reaction for simultaneous synthesis ofÂtwo important scaffolds, pyridin-2-ones and α-alkylated nitriles. Tetrahedron, 2015, 71, 663-668.	1.9	7
129	Exploiting Cofactor Versatility to Convert a FADâ€Dependent Baeyer–Villiger Monooxygenase into a Ketoreductase. Angewandte Chemie, 2019, 131, 14641-14645.	2.0	7
130	Stereoselectivity-tailored chemo-enzymatic synthesis of enantiocomplementary poly (ω-substituted-δ-valerolactone) enabled by engineered lipase. European Polymer Journal, 2019, 119, 52-60.	5.4	7
131	Regioselective Enzymatic Synthesis of Non-Steroidal Anti-Inflammatory Drugs Containing Glucose in Organic Media. Biotechnology Letters, 2005, 27, 789-792.	2.2	6
132	Chemoenzymatic synthesis, characterization, and controlled release of functional polymeric prodrugs with acyclovir as pendant. Journal of Applied Polymer Science, 2008, 108, 431-437.	2.6	6
133	High performance liquid chromatography enantioseparation of the novel designed mexiletine derivatives and its analogs. Chirality, 2011, 23, 99-104.	2.6	6
134	d-Aminoacylase-initiated cascade Aldol condensation/Robinson annulation for synthesis of substituted cyclohex-2-enones from simple aldehydes and acetone. Amino Acids, 2014, 46, 1929-1937.	2.7	6
135	Novel l-amino acid ester prodrugs of azacitidine: Design, enzymatic synthesis and the investigation of release behavior. Journal of Molecular Catalysis B: Enzymatic, 2014, 105, 49-57.	1.8	6
136	Dual-Enzyme-Catalyzed Synthesis of Enantiocomplementary Polyesters. ACS Macro Letters, 2019, 8, 1432-1436.	4.8	6
137	Biocatalytic Site-Selective Hydrogen Isotope Exchange of Unsaturated Fragments with D ₂ 0. ACS Catalysis, 2022, 12, 783-788.	11.2	6
138	Synthesis, characterization, and in vitro evaluation of two synergistic anticancer drug-containing hepatoma-targeting micelles formed from amphiphilic random copolymer. Biomaterials Science, 2013, 1, 774.	5.4	5
139	Intramolecular Stereoselective Stetter Reaction Catalyzed by Benzaldehyde Lyase. Angewandte Chemie, 2021, 133, 9412-9415.	2.0	5
140	Engineering Fatty Acid Photodecarboxylase to Enable Highly Selective Decarboxylation of <i>trans</i> Fatty Acids. Angewandte Chemie, 2021, 133, 20863-20867.	2.0	5
141	Asymmetric synthesis of strongly fluorescent spirooxazino derivatives via multi-enzymatic telescopic reactions. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S277-S280.	1.8	2
142	One Pot Enzyme-Catalyzed Cascade Benefit Systems. Mini-Reviews in Organic Chemistry, 2021, 18, 282-295.	1.3	2
143	Synthesis and Biological Evaluation of 1-(2-(6-Methoxynaphthalen-2-yl)-6-methylnicotinoyl)-4-Substituted Semicarbazides/Thiosemicarbazides as Anti-Tumor Nur77 Modulators. Molecules, 2022, 27, 1698.	3.8	2
144	Customizing the Enantioselectivity of a Cyclohexanone Monooxygenase by a Strategy Combining "Sizeâ€Probes―with in silico Study. ChemCatChem, 2019, 11, 5085-5092.	3.7	1

	A k Jun
QI	Wu

#	Article	IF	CITATIONS
145	Synthesis of highly active enzyme-metal nanohybrids and uncovering the design rules. Enzyme and Microbial Technology, 2022, 154, 109962.	3.2	1