Mario Noti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2100943/publications.pdf

Version: 2024-02-01

279798 477307 3,269 31 23 29 citations h-index g-index papers 31 31 31 4750 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	IL-20 subfamily cytokines impair the oesophageal epithelial barrier by diminishing filaggrin in eosinophilic oesophagitis. Gut, 2023, 72, 821-833.	12.1	8
2	Keratinocytes control skin immune homeostasis through de novo–synthesized glucocorticoids. Science Advances, 2021, 7, .	10.3	24
3	The aging gut microbiome and its impact on host immunity. Genes and Immunity, 2021, 22, 289-303.	4.1	164
4	Microbiome-host-immune crosstalk: mining the microbiome: a treasure trove waiting to be unlocked. Genes and Immunity, 2021, 22, 235-236.	4.1	1
5	Overview of in vivo and ex vivo endpoints in murine food allergy models: Suitable for evaluation of the sensitizing capacity of novel proteins?. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 289-301.	5.7	28
6	Eosinophils regulate adipose tissue inflammation and sustain physical and immunological fitness in old age. Nature Metabolism, 2020, 2, 688-702.	11.9	64
7	Keep calm: the intestinal barrier at the interface of peace and war. Cell Death and Disease, 2019, 10, 849.	6.3	98
8	High dietary fat intake induces a microbiota signature that promotes food allergy. Journal of Allergy and Clinical Immunology, 2019, 144, 157-170.e8.	2.9	84
9	Basophil-derived IL-4 promotes epicutaneous antigen sensitization concomitant with the development of food allergy. Journal of Allergy and Clinical Immunology, 2018, 141, 223-234.e5.	2.9	119
10	Editorial overview: Allergy and hypersensitivity: Emerging concepts in allergy and type 2 immunity. Current Opinion in Immunology, 2018, 54, iii-v.	5.5	0
11	Divergent Roles of Interferon- \hat{l}^3 and Innate Lymphoid Cells in Innate and Adaptive Immune Cell-Mediated Intestinal Inflammation. Frontiers in Immunology, 2018, 9, 23.	4.8	33
12	New perspectives on the initiation of allergic immune responses at barrier sites. Current Opinion in Immunology, 2018, 54, 130-136.	5 . 5	3
13	Current challenges facing the assessment of the allergenic capacity of food allergens in animal models. Clinical and Translational Allergy, 2016, 6, 21.	3.2	46
14	New insights into basophil heterogeneity. Seminars in Immunopathology, 2016, 38, 549-561.	6.1	28
15	The use of animal models to discover immunological mechanisms underpinning sensitization to food allergens. Drug Discovery Today: Disease Models, 2015, 17-18, 63-69.	1.2	9
16	Experimental food allergy models to study the role of innate immune cells as initiators of allergen-specific Th2 immune responses. Drug Discovery Today: Disease Models, 2015, 17-18, 55-62.	1.2	5
17	Keeping bugs in check: The mucus layer as a critical component in maintaining intestinal homeostasis. IUBMB Life, 2015, 67, 275-285.	3.4	66
18	IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin–EGFR interactions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10762-10767.	7.1	407

#	Article	IF	CITATION
19	Epithelial-intrinsic IKKα expression regulates group 3 innate lymphoid cell responses and antibacterial immunity. Journal of Experimental Medicine, 2015, 212, 1513-1528.	8.5	79
20	Characterization of eosinophilic esophagitis murine models using optical coherence tomography. Biomedical Optics Express, 2014, 5, 609.	2.9	10
21	Dry roasting enhances peanut-induced allergic sensitization across mucosal and cutaneous routes in mice. Journal of Allergy and Clinical Immunology, 2014, 134, 1453-1456.	2.9	41
22	Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin–basophil axis. Journal of Allergy and Clinical Immunology, 2014, 133, 1390-1399.e6.	2.9	233
23	Basophils Promote Innate Lymphoid Cell Responses in Inflamed Skin. Journal of Immunology, 2014, 193, 3717-3725.	0.8	236
24	Thymic stromal lymphopoietin–elicited basophil responses promote eosinophilic esophagitis. Nature Medicine, 2013, 19, 1005-1013.	30.7	351
25	TSLP Elicits IL-33–Independent Innate Lymphoid Cell Responses to Promote Skin Inflammation. Science Translational Medicine, 2013, 5, 170ra16.	12.4	618
26	TNF suppresses acute intestinal inflammation by inducing local glucocorticoid synthesis. Journal of Experimental Medicine, 2010, 207, 1057-1066.	8.5	144
27	Lipopolysaccharide induces intestinal glucocorticoid synthesis in a TNFαâ€dependent manner. FASEB Journal, 2010, 24, 1340-1346.	0.5	42
28	Innate immune cell populations function as initiators and effectors in Th2 cytokine responses. Trends in Immunology, 2010, 31, 407-413.	6.8	145
29	Extra-adrenal glucocorticoid synthesis in the intestinal epithelium: more than a drop in the ocean?. Seminars in Immunopathology, 2009, 31, 237-248.	6.1	37
30	Cell cycleâ€dependent regulation of extraâ€adrenal glucocorticoid synthesis in murine intestinal epithelial cells. FASEB Journal, 2008, 22, 4117-4125.	0.5	35
31	The nuclear receptor LRH-1 critically regulates extra-adrenal glucocorticoid synthesis in the intesting Journal of Experimental Medicine, 2006, 203, 2057-2062	8. 5	111