Myriam Gorospe

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/209996/myriam-gorospe-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

23,618 81 272 147 h-index g-index citations papers 8.6 7.06 27,455 301 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
272	Systematic identification of NF90 target RNAs by iCLIP analysis Scientific Reports, 2022, 12, 364	4.9	O
271	Identification of atrial-enriched lncRNA Walras linked to cardiomyocyte cytoarchitecture and atrial fibrillation. <i>FASEB Journal</i> , 2022 , 36, e22051	0.9	1
270	Identification of gingerenone A as a novel senolytic compound <i>PLoS ONE</i> , 2022 , 17, e0266135	3.7	3
269	Early SRC activation skews cell fate from apoptosis to senescence <i>Science Advances</i> , 2022 , 8, eabm075	614.3	3
268	Proteomes of primary skin fibroblasts from healthy individuals reveal altered cell responses across the life span <i>Aging Cell</i> , 2022 , e13609	9.9	O
267	A brain proteomic signature of incipient Alzheimerß disease in young 🛭 carriers identifies novel drug targets. <i>Science Advances</i> , 2021 , 7, eabi8178	14.3	2
266	The versatile role of HuR in Glioblastoma and its potential as a therapeutic target for a multi-pronged attack <i>Advanced Drug Delivery Reviews</i> , 2021 , 181, 114082	18.5	2
265	Predicting physiological aging rates from a range of quantitative traits using machine learning. <i>Aging</i> , 2021 , 13, 23471-23516	5.6	О
264	hnRNPK-regulated LINC00263 promotes malignant phenotypes through miR-147a/CAPN2. <i>Cell Death and Disease</i> , 2021 , 12, 290	9.8	7
263	Proteomics in aging research: A roadmap to clinical, translational research. <i>Aging Cell</i> , 2021 , 20, e13325	9.9	10
262	Skeletal muscle transcriptome in healthy aging. <i>Nature Communications</i> , 2021 , 12, 2014	17.4	12
261	GRSF1 deficiency in skeletal muscle reduces endurance in aged mice. <i>Aging</i> , 2021 , 13, 14557-14570	5.6	1
260	Reduction of lamin B receptor levels by miR-340-5p disrupts chromatin, promotes cell senescence and enhances senolysis. <i>Nucleic Acids Research</i> , 2021 , 49, 7389-7405	20.1	5
259	MicroRNA-195 regulates Tuft cell function in the intestinal epithelium by altering translation of DCLK1. <i>American Journal of Physiology - Cell Physiology</i> , 2021 , 320, C1042-C1054	5.4	4
258	Acid ceramidase promotes senescent cell survival. <i>Aging</i> , 2021 , 13, 15750-15769	5.6	5
257	Translational Control during Cellular Senescence. <i>Molecular and Cellular Biology</i> , 2021 , 41,	4.8	7
256	Practical guide for circular RNA analysis: Steps, tips, and resources. <i>Wiley Interdisciplinary Reviews RNA</i> , 2021 , 12, e1633	9.3	8

(2020-2021)

255	Identification of circRNA-Interacting Proteins by Affinity Pulldown. <i>Methods in Molecular Biology</i> , 2021 , 2372, 193-202	1.4	
254	Characterizing and circumventing sequence restrictions for synthesis of circular RNA in vitro. Nucleic Acids Research, 2021, 49, e35	20.1	2
253	AUF1 ligand circPCNX reduces cell proliferation by competing with p21 mRNA to increase p21 production. <i>Nucleic Acids Research</i> , 2021 , 49, 1631-1646	20.1	20
252	Ribosome profiling analysis of human skeletal muscle identifies reduced translation of mitochondrial proteins with age. <i>RNA Biology</i> , 2021 , 18, 1555-1559	4.8	2
251	HuB and HuD repress telomerase activity by dissociating HuR from TERC. <i>Nucleic Acids Research</i> , 2021 , 49, 2848-2858	20.1	2
250	SFPQ rescues F508del-CFTR expression and function in cystic fibrosis bronchial epithelial cells. <i>Scientific Reports</i> , 2021 , 11, 16645	4.9	1
249	Systematic Identification of circRNAs in Alzheimerß Disease. <i>Genes</i> , 2021 , 12,	4.2	2
248	Circular RNA CircHIPK3 Promotes Homeostasis of the Intestinal Epithelium by Reducing MicroRNA 29b Function. <i>Gastroenterology</i> , 2021 , 161, 1303-1317.e3	13.3	10
247	Mitochondrial RNA in Alzheimer Disease Circulating Extracellular Vesicles. Frontiers in Cell and Developmental Biology, 2020 , 8, 581882	5.7	9
246	Hepatic HuR modulates lipid homeostasis in response to high-fat diet. <i>Nature Communications</i> , 2020 , 11, 3067	17.4	16
245	RNA-Binding Protein HuR Promotes Th17 Cell Differentiation and Can Be Targeted to Reduce Autoimmune Neuroinflammation. <i>Journal of Immunology</i> , 2020 , 204, 2076-2087	5.3	9
244	Circular RNAs in Blood Malignancies. Frontiers in Molecular Biosciences, 2020 , 7, 109	5.6	19
243	Noncoding RNAs Controlling Telomere Homeostasis in Senescence and Aging. <i>Trends in Molecular Medicine</i> , 2020 , 26, 422-433	11.5	9
242	A Circular RNA from the Locus Controls Cell Cycle Progression by Suppressing p53 Levels. <i>Molecular and Cellular Biology</i> , 2020 , 40,	4.8	14
241	Interaction between HuR and Modulates Autophagy in the Intestinal Epithelium by Altering ATG16L1 Translation. <i>Molecular and Cellular Biology</i> , 2020 , 40,	4.8	37
240	circSamd4 represses myogenic transcriptional activity of PUR proteins. <i>Nucleic Acids Research</i> , 2020 , 48, 3789-3805	20.1	34
239	HuR/ELAVL1 drives malignant peripheral nerve sheath tumor growth and metastasis. <i>Journal of Clinical Investigation</i> , 2020 , 130, 3848-3864	15.9	12
238	Survey of senescent cell markers with age in human tissues. <i>Aging</i> , 2020 , 12, 4052-4066	5.6	33

237	Senolysis and Senostasis Through the Plasma Membrane. <i>Healthy Ageing and Longevity</i> , 2020 , 131-143	0.5	1
236	A small protein encoded by a putative lncRNA regulates apoptosis and tumorigenicity in human colorectal cancer cells. <i>ELife</i> , 2020 , 9,	8.9	16
235	Ribonucleoprotein Immunoprecipitation (RIP) Analysis. <i>Bio-protocol</i> , 2020 , 10, e3488	0.9	1
234	Long Noncoding RNA H19 Impairs the Intestinal Barrier by Suppressing Autophagy and Lowering Paneth and Goblet Cell Function. <i>Cellular and Molecular Gastroenterology and Hepatology</i> , 2020 , 9, 611-	6 2:9	23
233	SIRT3 Haploinsufficiency Aggravates Loss of GABAergic Interneurons and Neuronal Network Hyperexcitability in an Alzheimerß Disease Model. <i>Journal of Neuroscience</i> , 2020 , 40, 694-709	6.6	27
232	A novel long noncoding RNA Linc-ASEN represses cellular senescence through multileveled reduction of p21 expression. <i>Cell Death and Differentiation</i> , 2020 , 27, 1844-1861	12.7	11
231	NQO1 protects obese mice through improvements in glucose and lipid metabolism. <i>Npj Aging and Mechanisms of Disease</i> , 2020 , 6, 13	5.5	10
230	Interaction of OIP5-AS1 with MEF2C mRNA promotes myogenic gene expression. <i>Nucleic Acids Research</i> , 2020 , 48, 12943-12956	20.1	13
229	Evolutionarily Selected Overexpression of the Cytokine BAFF Enhances Mucosal Immune Response Against. <i>Frontiers in Immunology</i> , 2020 , 11, 575103	8.4	1
228	Regulation of cellular sterol homeostasis by the oxygen responsive noncoding RNA lincNORS. <i>Nature Communications</i> , 2020 , 11, 4755	17.4	7
227	Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. <i>Nature Genetics</i> , 2020 , 52, 1036-1045	36.3	16
226	Methods for analysis of circular RNAs. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1566	9.3	17
225	HuR regulates phospholamban expression in isoproterenol-induced cardiac remodelling. <i>Cardiovascular Research</i> , 2020 , 116, 944-955	9.9	13
224	Regulation of senescence traits by MAPKs. <i>GeroScience</i> , 2020 , 42, 397-408	8.9	27
223	Rolling Circle cDNA Synthesis Uncovers Circular RNA Splice Variants. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	15
222	Loss of miR-451a enhances SPARC production during myogenesis. <i>PLoS ONE</i> , 2019 , 14, e0214301	3.7	7
221	mRNA methylation in cell senescence. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1547	9.3	19
220	Long noncoding RNAs in intestinal epithelium homeostasis. <i>American Journal of Physiology - Cell Physiology</i> , 2019 , 317, C93-C100	5.4	12

(2018-2019)

219	Senolytic therapy alleviates Alassociated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer disease model. <i>Nature Neuroscience</i> , 2019 , 22, 719-728	25.5	315
218	RNA-Binding Protein HuR Regulates Paneth Cell Function by Altering Membrane Localization of TLR2 via Post-transcriptional Control of CNPY3. <i>Gastroenterology</i> , 2019 , 157, 731-743	13.3	22
217	Transcriptome signature of cellular senescence. <i>Nucleic Acids Research</i> , 2019 , 47, 7294-7305	20.1	69
216	Skewed macrophage polarization in aging skeletal muscle. <i>Aging Cell</i> , 2019 , 18, e13032	9.9	35
215	Discovery proteomics in aging human skeletal muscle finds change in spliceosome, immunity, proteostasis and mitochondria. <i>ELife</i> , 2019 , 8,	8.9	60
214	NF90 regulation of immune factor expression in response to malaria antigens. <i>Cell Cycle</i> , 2019 , 18, 708-	·7. 2 . 2/	6
213	Loss of RNA-binding protein GRSF1 activates mTOR to elicit a proinflammatory transcriptional program. <i>Nucleic Acids Research</i> , 2019 , 47, 2472-2486	20.1	14
212	HuR Reduces Radiation-Induced DNA Damage by Enhancing Expression of ARID1A. <i>Cancers</i> , 2019 , 11,	6.6	11
211	RPAD (RNase R treatment, polyadenylation, and poly(A)+ RNA depletion) method to isolate highly pure circular RNA. <i>Methods</i> , 2019 , 155, 41-48	4.6	25
210	Cytoplasmic functions of long noncoding RNAs. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1471	9.3	202
209	Regulation of Intestinal Epithelial Barrier Function by Long Noncoding RNA through Interaction with MicroRNA 29b. <i>Molecular and Cellular Biology</i> , 2018 , 38,	4.8	28
208	Noncoding RNAs in Alzheimerß disease. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1463	9.3	83
207	Analysis of Circular RNAs Using the Web Tool CircInteractome. <i>Methods in Molecular Biology</i> , 2018 , 1724, 43-56	1.4	25
206	Stress granules counteract senescence by sequestration of PAI-1. EMBO Reports, 2018, 19,	6.5	24
205	A RAS-CaMKKEAMPKI pathway promotes senescence by licensing post-translational activation of C/EBPIthrough a novel 3RJTR mechanism. <i>Oncogene</i> , 2018 , 37, 3528-3548	9.2	6
204	STIM1, but not STIM2, Is the Calcium Sensor Critical for Sweat Secretion. <i>Journal of Investigative Dermatology</i> , 2018 , 138, 704-707	4.3	3
203	MIR100 host gene-encoded lncRNAs regulate cell cycle by modulating the interaction between HuR and its target mRNAs. <i>Nucleic Acids Research</i> , 2018 , 46, 10405-10416	20.1	44
202	HuR regulates telomerase activity through TERC methylation. <i>Nature Communications</i> , 2018 , 9, 2213	17.4	15

201	Long Noncoding RNA uc.173 Promotes Renewal of the Intestinal Mucosa by Inducing Degradation of MicroRNA 195. <i>Gastroenterology</i> , 2018 , 154, 599-611	13.3	64
200	Detection and Analysis of Circular RNAs by RT-PCR. <i>Bio-protocol</i> , 2018 , 8,	0.9	61
199	GRSF1 suppresses cell senescence. <i>Aging</i> , 2018 , 10, 1856-1866	5.6	8
198	Cooperative translational control of polymorphic BAFF by NF90 and miR-15a. <i>Nucleic Acids Research</i> , 2018 , 46, 12040-12051	20.1	11
197	Intracellular RNA-tracking methods. <i>Open Biology</i> , 2018 , 8,	7	12
196	A Coordinates Small Intestinal Epithelium Homeostasis by Regulating Stability of HuR. <i>Molecular and Cellular Biology</i> , 2018 , 38,	4.8	14
195	SCAMP4 enhances the senescent cell secretome. <i>Genes and Development</i> , 2018 , 32, 909-914	12.6	26
194	Posttranslational control of HuR function. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1372	9.3	119
193	Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. <i>RNA Biology</i> , 2017 , 14, 361-369	4.8	440
192	RNA in extracellular vesicles. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1413	9.3	245
191	NSUN2-Mediated m5C Methylation and METTL3/METTL14-Mediated m6A Methylation Cooperatively Enhance p21 Translation. <i>Journal of Cellular Biochemistry</i> , 2017 , 118, 2587-2598	4.7	106
190	SASP regulation by noncoding RNA. <i>Mechanisms of Ageing and Development</i> , 2017 , 168, 37-43	5.6	41
189	TIA-1 RRM23 binding and recognition of target oligonucleotides. <i>Nucleic Acids Research</i> , 2017 , 45, 4944	-4957	10
188	WIG1 is crucial for AGO2-mediated ACOT7 mRNA silencing via miRNA-dependent and -independent mechanisms. <i>Nucleic Acids Research</i> , 2017 , 45, 6894-6910	20.1	6
187	Overexpression of the Cytokine BAFF and Autoimmunity Risk. <i>New England Journal of Medicine</i> , 2017 , 376, 1615-1626	59.2	198
186	High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. <i>Nucleic Acids Research</i> , 2017 , 45, e116	20.1	107
185	Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. <i>Nucleic Acids Research</i> , 2017 , 45, 4021-4035	20.1	156
184	Bioinformatic tools for analysis of CLIP ribonucleoprotein data. <i>Wiley Interdisciplinary Reviews RNA</i> , 2017 , 8, e1404	9.3	8

183	HuR Enhances Early Restitution of the Intestinal Epithelium by Increasing Cdc42 Translation. <i>Molecular and Cellular Biology</i> , 2017 , 37,	4.8	30
182	Regulation of HuR structure and function by dihydrotanshinone-I. <i>Nucleic Acids Research</i> , 2017 , 45, 9514	1 - 9527	41
181	Polysome Fractionation to Analyze mRNA Distribution Profiles. <i>Bio-protocol</i> , 2017 , 7,	0.9	52
180	RNA-editing enzymes ADAR1 and ADAR2 coordinately regulate the editing and expression of Ctn RNA. <i>FEBS Letters</i> , 2017 , 591, 2890-2904	3.8	19
179	Identification of senescent cell surface targetable protein DPP4. Genes and Development, 2017, 31, 1529	911534	1 103
178	Cooperative Repression of Insulin-Like Growth Factor Type 2 Receptor Translation by MicroRNA 195 and RNA-Binding Protein CUGBP1. <i>Molecular and Cellular Biology</i> , 2017 , 37,	4.8	15
177	Senescence-Associated MicroRNAs. International Review of Cell and Molecular Biology, 2017, 334, 177-20	06	31
176	The RNA-binding protein HuR contributes to neuroinflammation by promoting C-C chemokine receptor 6 (CCR6) expression on Th17 cells. <i>Journal of Biological Chemistry</i> , 2017 , 292, 14532-14543	5.4	16
175	RT-qPCR Detection of Senescence-Associated Circular RNAs. <i>Methods in Molecular Biology</i> , 2017 , 1534, 79-87	1.4	18
174	Emerging roles and context of circular RNAs. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1386	9.3	99
173	ADAR2 regulates RNA stability by modifying access of decay-promoting RNA-binding proteins. <i>Nucleic Acids Research</i> , 2017 , 45, 4189-4201	20.1	29
172	Mitochondrial noncoding RNA transport. <i>BMB Reports</i> , 2017 , 50, 164-174	5.5	43
171	LncRNA OIP5-AS1/cyrano suppresses GAK expression to control mitosis. <i>Oncotarget</i> , 2017 , 8, 49409-494	43.6	33
170	The RNA-Binding Protein HuR Posttranscriptionally Regulates IL-2 Homeostasis and CD4 Th2 Differentiation. <i>ImmunoHorizons</i> , 2017 , 1, 109-123	2.7	13
169	Long noncoding RNAs in diseases of aging. <i>Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms</i> , 2016 , 1859, 209-21	6	58
168	The long and the short of TRF2 in neurogenesis. <i>Cell Cycle</i> , 2016 , 15, 3026-3032	4.7	8
167	UNRelenting Translation UNRestrains Melanoma Migration. Cancer Cell, 2016, 30, 655-657	24.3	0
166	Cockayne syndrome group A and B proteins converge on transcription-linked resolution of non-B DNA. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 12502-	·12557	, 56

165	Alternative Splicing of Neuronal Differentiation Factor TRF2 Regulated by HNRNPH1/H2. <i>Cell Reports</i> , 2016 , 15, 926-934	10.6	34
164	Mammalian ataxin-2 modulates translation control at the pre-initiation complex via PI3K/mTOR and is induced by starvation. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2016 , 1862, 1558-69	6.9	50
163	RPTOR, a novel target of miR-155, elicits a fibrotic phenotype of cystic fibrosis lung epithelium by upregulating CTGF. <i>RNA Biology</i> , 2016 , 13, 837-47	4.8	19
162	RNA-binding proteins regulate cell respiration and coenzyme Q biosynthesis by post-transcriptional regulation of COQ7. <i>RNA Biology</i> , 2016 , 13, 622-34	4.8	23
161	CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. <i>RNA Biology</i> , 2016 , 13, 34-42	4.8	604
160	LncRNA OIP5-AS1/cyrano sponges RNA-binding protein HuR. <i>Nucleic Acids Research</i> , 2016 , 44, 2378-92	20.1	125
159	H19 Long Noncoding RNA Regulates Intestinal Epithelial Barrier Function via MicroRNA 675 by Interacting with RNA-Binding Protein HuR. <i>Molecular and Cellular Biology</i> , 2016 , 36, 1332-41	4.8	86
158	Novel RNA-binding activity of MYF5 enhances Ccnd1/Cyclin D1 mRNA translation during myogenesis. <i>Nucleic Acids Research</i> , 2016 , 44, 2393-408	20.1	38
157	RNA-binding protein HuD reduces triglyceride production in pancreatic Lells by enhancing the expression of insulin-induced gene 1. <i>Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms</i> , 2016 , 1859, 675-85	6	15
156	Long noncoding RNA SPRY4-IT1 regulates intestinal epithelial barrier function by modulating the expression levels of tight junction proteins. <i>Molecular Biology of the Cell</i> , 2016 , 27, 617-26	3.5	63
155	HuR silencing elicits oxidative stress and DNA damage and sensitizes human triple-negative breast cancer cells to radiotherapy. <i>Oncotarget</i> , 2016 , 7, 64820-64835	3.3	45
154	RNA methyltransferase NSUN2 promotes stress-induced HUVEC senescence. <i>Oncotarget</i> , 2016 , 7, 1909	9 ₃ .1310	29
153	Cross-Linking Immunoprecipitation and qPCR (CLIP-qPCR) Analysis to Map Interactions Between Long Noncoding RNAs and RNA-Binding Proteins. <i>Methods in Molecular Biology</i> , 2016 , 1402, 11-17	1.4	30
152	Identification of mRNA-Interacting Factors by MS2-TRAP (MS2-Tagged RNA Affinity Purification). <i>Methods in Molecular Biology</i> , 2016 , 1421, 15-22	1.4	22
151	Affinity Pulldown of Biotinylated RNA for Detection of Protein-RNA Complexes. <i>Bio-protocol</i> , 2016 , 6,	0.9	21
150	Identification of neural stem cell differentiation repressor complex Pnky-PTBP1. <i>Stem Cell Investigation</i> , 2016 , 3, 10	5.1	12
149	HuR and GRSF1 modulate the nuclear export and mitochondrial localization of the lncRNA RMRP. <i>Genes and Development</i> , 2016 , 30, 1224-39	12.6	117
148	RNA topoisomerase is prevalent in all domains of life and associates with polyribosomes in animals. Nucleic Acids Research, 2016 , 44, 6335-49	20.1	44

(2015-2016)

147	Novel RNA-binding activity of NQO1 promotes SERPINA1 mRNA translation. <i>Free Radical Biology and Medicine</i> , 2016 , 99, 225-233	7.8	18
146	Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence. <i>Aging Cell</i> , 2016 , 15, 572-81	9.9	107
145	miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting Smad4. <i>Genes and Development</i> , 2015 , 29, 1605-17	12.6	67
144	RNA-Binding Protein Musashi1 Is a Central Regulator of Adhesion Pathways in Glioblastoma. <i>Molecular and Cellular Biology</i> , 2015 , 35, 2965-78	4.8	33
143	Competition between RNA-binding proteins CELF1 and HuR modulates MYC translation and intestinal epithelium renewal. <i>Molecular Biology of the Cell</i> , 2015 , 26, 1797-810	3.5	68
142	Modulation by miR-29b of intestinal epithelium homoeostasis through the repression of menin translation. <i>Biochemical Journal</i> , 2015 , 465, 315-23	3.8	19
141	Long noncoding RNA turnover. <i>Biochimie</i> , 2015 , 117, 15-21	4.6	45
140	AUF1 promotes let-7b loading on Argonaute 2. <i>Genes and Development</i> , 2015 , 29, 1599-604	12.6	33
139	NSun2 Promotes Cell Growth via Elevating Cyclin-Dependent Kinase 1 Translation. <i>Molecular and Cellular Biology</i> , 2015 , 35, 4043-52	4.8	62
138	Posttranscriptional Regulation of the Inflammatory Marker C-Reactive Protein by the RNA-Binding Protein HuR and MicroRNA 637. <i>Molecular and Cellular Biology</i> , 2015 , 35, 4212-21	4.8	31
137	Induction of VEGFA mRNA translation by CoCl2 mediated by HuR. RNA Biology, 2015, 12, 1121-30	4.8	24
136	Novel RNA- and FMRP-binding protein TRF2-S regulates axonal mRNA transport and presynaptic plasticity. <i>Nature Communications</i> , 2015 , 6, 8888	17.4	27
135	B Cell-Intrinsic Expression of the HuR RNA-Binding Protein Is Required for the T Cell-Dependent Immune Response In Vivo. <i>Journal of Immunology</i> , 2015 , 195, 3449-62	5.3	21
134	A BRCA1-interacting lncRNA regulates homologous recombination. <i>EMBO Reports</i> , 2015 , 16, 1520-34	6.5	95
133	Noncoding RNA control of cellular senescence. Wiley Interdisciplinary Reviews RNA, 2015, 6, 615-29	9.3	57
132	Circular RNAs in monkey muscle: age-dependent changes. <i>Aging</i> , 2015 , 7, 903-10	5.6	79
131	NSun2 delays replicative senescence by repressing p27 (KIP1) translation and elevating CDK1 translation. <i>Aging</i> , 2015 , 7, 1143-58	5.6	65
130	Transgenic Expression of miR-222 Disrupts Intestinal Epithelial Regeneration by Targeting Multiple Genes Including Frizzled-7. <i>Molecular Medicine</i> , 2015 , 21, 676-687	6.2	20

129	JunD enhances miR-29b levels transcriptionally and posttranscriptionally to inhibit proliferation of intestinal epithelial cells. <i>American Journal of Physiology - Cell Physiology</i> , 2015 , 308, C813-24	5.4	15
128	Noncoding RNA in age-related cardiovascular diseases. <i>Journal of Molecular and Cellular Cardiology</i> , 2015 , 83, 142-55	5.8	87
127	PAR-CLIP analysis uncovers AUF1 impact on target RNA fate and genome integrity. <i>Nature Communications</i> , 2014 , 5, 5248	17.4	108
126	Methylation by NSun2 represses the levels and function of microRNA 125b. <i>Molecular and Cellular Biology</i> , 2014 , 34, 3630-41	4.8	66
125	RNA binding protein HuR regulates the expression of ABCA1. <i>Journal of Lipid Research</i> , 2014 , 55, 1066-7	76 .3	24
124	Destabilization of nucleophosmin mRNA by the HuR/KSRP complex is required for muscle fibre formation. <i>Nature Communications</i> , 2014 , 5, 4190	17.4	46
123	RNA-binding protein AUF1 promotes myogenesis by regulating MEF2C expression levels. <i>Molecular and Cellular Biology</i> , 2014 , 34, 3106-19	4.8	27
122	Functional interactions among microRNAs and long noncoding RNAs. <i>Seminars in Cell and Developmental Biology</i> , 2014 , 34, 9-14	7.5	456
121	HuD regulates coding and noncoding RNA to induce APP-Alprocessing. Cell Reports, 2014, 7, 1401-1409	10.6	70
120	miR-196b-mediated translation regulation of mouse insulin2 via the 5RJTR. PLoS ONE, 2014 , 9, e101084	3.7	25
119	Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging. <i>Aging</i> , 2014 , 6, 992-1009	5.6	137
118	Conditional knockout of the RNA-binding protein HuR in CD4+ T cells reveals a gene dosage effect on cytokine production. <i>Molecular Medicine</i> , 2014 , 20, 93-108	6.2	24
117	The binding of TIA-1 to RNA C-rich sequences is driven by its C-terminal RRM domain. <i>RNA Biology</i> , 2014 , 11, 766-76	4.8	12
116	Novel RNA-binding protein P311 binds eukaryotic translation initiation factor 3 subunit b (eIF3b) to promote translation of transforming growth factor 🗓-3 (TGF-🗓-3). <i>Journal of Biological Chemistry</i> , 2014 , 289, 33971-83	5.4	23
115	RNA-binding protein HuR promotes growth of small intestinal mucosa by activating the Wnt signaling pathway. <i>Molecular Biology of the Cell</i> , 2014 , 25, 3308-18	3.5	50
114	let-7-repressesed Shc translation delays replicative senescence. <i>Aging Cell</i> , 2014 , 13, 185-92	9.9	15
113	Tyrosine phosphorylation of HuR by JAK3 triggers dissociation and degradation of HuR target mRNAs. <i>Nucleic Acids Research</i> , 2014 , 42, 1196-208	20.1	35
112	dCK expression correlates with 5-fluorouracil efficacy and HuR cytoplasmic expression in pancreatic cancer: a dual-institutional follow-up with the RTOG 9704 trial. <i>Cancer Biology and Therapy</i> , 2014 , 15, 688-98	4.6	28

111	7SL RNA represses p53 translation by competing with HuR. <i>Nucleic Acids Research</i> , 2014 , 42, 10099-111	20.1	87
110	Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. <i>Nature Communications</i> , 2013 , 4, 2939	17.4	301
109	Posttranscriptional gene regulation by long noncoding RNA. <i>Journal of Molecular Biology</i> , 2013 , 425, 3723-30	6.5	416
108	Modulation of cancer traits by tumor suppressor microRNAs. <i>International Journal of Molecular Sciences</i> , 2013 , 14, 1822-42	6.3	25
107	Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. <i>PLoS Genetics</i> , 2013 , 9, e1003368	6	528
106	Senescence-associated lncRNAs: senescence-associated long noncoding RNAs. <i>Aging Cell</i> , 2013 , 12, 890	-900	147
105	Regulation of Senescence by microRNAs 2013 , 59-75		
104	Novel MicroRNA Reporter Uncovers Repression of Let-7 by GSK-3[]PLoS ONE, 2013 , 8, e66330	3.7	23
103	Age-associated miRNA alterations in skeletal muscle from rhesus monkeys reversed by caloric restriction. <i>Aging</i> , 2013 , 5, 692-703	5.6	91
102	LincRNA-p21 suppresses target mRNA translation. <i>Molecular Cell</i> , 2012 , 47, 648-55	17.6	728
101	Regulation of senescence by microRNA biogenesis factors. <i>Ageing Research Reviews</i> , 2012 , 11, 491-500	12	35
100			
100	The RNA-binding protein human antigen R controls global changes in gene expression during Schwann cell development. <i>Journal of Neuroscience</i> , 2012 , 32, 4944-58	6.6	9
99			9 75
	Schwann cell development. <i>Journal of Neuroscience</i> , 2012 , 32, 4944-58		
99	Schwann cell development. <i>Journal of Neuroscience</i> , 2012 , 32, 4944-58 RNA-binding protein HuD controls insulin translation. <i>Molecular Cell</i> , 2012 , 45, 826-35	17.6	75
99 98	Schwann cell development. <i>Journal of Neuroscience</i> , 2012 , 32, 4944-58 RNA-binding protein HuD controls insulin translation. <i>Molecular Cell</i> , 2012 , 45, 826-35 HuR function in disease. <i>Frontiers in Bioscience - Landmark</i> , 2012 , 17, 189-205 Growth inhibition by miR-519 via multiple p21-inducing pathways. <i>Molecular and Cellular Biology</i> ,	17.6 2.8	75 230 45
99 98 97	Schwann cell development. <i>Journal of Neuroscience</i> , 2012 , 32, 4944-58 RNA-binding protein HuD controls insulin translation. <i>Molecular Cell</i> , 2012 , 45, 826-35 HuR function in disease. <i>Frontiers in Bioscience - Landmark</i> , 2012 , 17, 189-205 Growth inhibition by miR-519 via multiple p21-inducing pathways. <i>Molecular and Cellular Biology</i> , 2012 , 32, 2530-48	17.6 2.8 4.8	75 230 45

93	The oncogenic RNA-binding protein Musashi1 is regulated by HuR via mRNA translation and stability in glioblastoma cells. <i>Molecular Cancer Research</i> , 2012 , 10, 143-55	6.6	54
92	Functional interplay between RNA-binding protein HuR and microRNAs. <i>Current Protein and Peptide Science</i> , 2012 , 13, 372-9	2.8	135
91	NF90 coordinately represses the senescence-associated secretory phenotype. <i>Aging</i> , 2012 , 4, 695-708	5.6	36
90	UneCLIPsing HuR nuclear function. <i>Molecular Cell</i> , 2011 , 43, 319-21	17.6	22
89	Post-Transcriptional Control of the Hypoxic Response by RNA-Binding Proteins and MicroRNAs. <i>Frontiers in Molecular Neuroscience</i> , 2011 , 4, 7	6.1	87
88	Global dissociation of HuR-mRNA complexes promotes cell survival after ionizing radiation. <i>EMBO Journal</i> , 2011 , 30, 1040-53	13	60
87	MicroRegulators come of age in senescence. <i>Trends in Genetics</i> , 2011 , 27, 233-41	8.5	94
86	Role of RNA binding protein HuR in ductal carcinoma in situ of the breast. <i>Journal of Pathology</i> , 2011 , 224, 529-39	9.4	34
85	Enhanced translation by Nucleolin via G-rich elements in coding and non-coding regions of target mRNAs. <i>Nucleic Acids Research</i> , 2011 , 39, 8513-30	20.1	85
84	Chk2-dependent HuR phosphorylation regulates occludin mRNA translation and epithelial barrier function. <i>Nucleic Acids Research</i> , 2011 , 39, 8472-87	20.1	61
83	miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression. <i>Molecular and Cellular Biology</i> , 2011 , 31, 626-38	4.8	265
82	Different modes of interaction by TIAR and HuR with target RNA and DNA. <i>Nucleic Acids Research</i> , 2011 , 39, 1117-30	20.1	53
81	Coding region: the neglected post-transcriptional code. RNA Biology, 2011, 8, 44-8	4.8	28
80	Competitive regulation of nucleolin expression by HuR and miR-494. <i>Molecular and Cellular Biology</i> , 2011 , 31, 4219-31	4.8	81
79	Paradoxical microRNAs: individual gene repressors, global translation enhancers. <i>Cell Cycle</i> , 2011 , 10, 751-9	4.7	24
78	Chemokine transcripts as targets of the RNA-binding protein HuR in human airway epithelium. Journal of Immunology, 2011 , 186, 2482-94	5.3	63
77	Translational control of TOP2A influences doxorubicin efficacy. <i>Molecular and Cellular Biology</i> , 2011 , 31, 3790-801	4.8	71
76	hnRNP C promotes APP translation by competing with FMRP for APP mRNA recruitment to P bodies. <i>Nature Structural and Molecular Biology</i> , 2010 , 17, 732-9	17.6	119

(2009-2010)

75	microRNA expression patterns reveal differential expression of target genes with age. <i>PLoS ONE</i> , 2010 , 5, e10724	3.7	267
74	Regulation of HuR by DNA Damage Response Kinases. <i>Journal of Nucleic Acids</i> , 2010 , 2010,	2.3	51
73	MicroRNA profiling in human diploid fibroblasts uncovers miR-519 role in replicative senescence. <i>Aging</i> , 2010 , 2, 333-43	5.6	109
72	miR-375 inhibits differentiation of neurites by lowering HuD levels. <i>Molecular and Cellular Biology</i> , 2010 , 30, 4197-210	4.8	99
71	HuR uses AUF1 as a cofactor to promote p16INK4 mRNA decay. <i>Molecular and Cellular Biology</i> , 2010 , 30, 3875-86	4.8	92
70	NF90 selectively represses the translation of target mRNAs bearing an AU-rich signature motif. <i>Nucleic Acids Research</i> , 2010 , 38, 225-38	20.1	94
69	miR-519 suppresses tumor growth by reducing HuR levels. <i>Cell Cycle</i> , 2010 , 9, 1354-9	4.7	108
68	Response to Comment on "Increased MKK4 Abundance with Replicative Senescence Is Linked to the Joint Reduction of Multiple MicroRNAs". <i>Science Signaling</i> , 2010 , 3, lc2-lc2	8.8	
67	Posttranscriptional regulation of cancer traits by HuR. Wiley Interdisciplinary Reviews RNA, 2010, 1, 214	-29 .3	305
66	pp32 (ANP32A) expression inhibits pancreatic cancer cell growth and induces gemcitabine resistance by disrupting HuR binding to mRNAs. <i>PLoS ONE</i> , 2010 , 5, e15455	3.7	37
66		3·7 5.6	37 29
	resistance by disrupting HuR binding to mRNAs. <i>PLoS ONE</i> , 2010 , 5, e15455		
65	resistance by disrupting HuR binding to mRNAs. <i>PLoS ONE</i> , 2010 , 5, e15455 Impact papers on aging in 2009. <i>Aging</i> , 2010 , 2, 111-21 Polyamines regulate c-Myc translation through Chk2-dependent HuR phosphorylation. <i>Molecular</i>	5.6	29
65 64	resistance by disrupting HuR binding to mRNAs. <i>PLoS ONE</i> , 2010 , 5, e15455 Impact papers on aging in 2009. <i>Aging</i> , 2010 , 2, 111-21 Polyamines regulate c-Myc translation through Chk2-dependent HuR phosphorylation. <i>Molecular Biology of the Cell</i> , 2009 , 20, 4885-98 Increased MKK4 abundance with replicative senescence is linked to the joint reduction of multiple	5.6 3·5	29 81 60
65 64 63	resistance by disrupting HuR binding to mRNAs. <i>PLoS ONE</i> , 2010 , 5, e15455 Impact papers on aging in 2009. <i>Aging</i> , 2010 , 2, 111-21 Polyamines regulate c-Myc translation through Chk2-dependent HuR phosphorylation. <i>Molecular Biology of the Cell</i> , 2009 , 20, 4885-98 Increased MKK4 abundance with replicative senescence is linked to the joint reduction of multiple microRNAs. <i>Science Signaling</i> , 2009 , 2, ra69 The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic	5.6 3·5 8.8	29 81 60 169
65 64 63 62	Impact papers on aging in 2009. Aging, 2010, 2, 111-21 Polyamines regulate c-Myc translation through Chk2-dependent HuR phosphorylation. Molecular Biology of the Cell, 2009, 20, 4885-98 Increased MKK4 abundance with replicative senescence is linked to the joint reduction of multiple microRNAs. Science Signaling, 2009, 2, ra69 The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis. Cancer Research, 2009, 69, 5168-76 Stabilization of XIAP mRNA through the RNA binding protein HuR regulated by cellular polyamines.	5.6 3.5 8.8	29 81 60 169
65 64 63 62 61	Impact papers on aging in 2009. <i>Aging</i> , 2010 , 2, 111-21 Polyamines regulate c-Myc translation through Chk2-dependent HuR phosphorylation. <i>Molecular Biology of the Cell</i> , 2009 , 20, 4885-98 Increased MKK4 abundance with replicative senescence is linked to the joint reduction of multiple microRNAs. <i>Science Signaling</i> , 2009 , 2, ra69 The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis. <i>Cancer Research</i> , 2009 , 69, 5168-76 Stabilization of XIAP mRNA through the RNA binding protein HuR regulated by cellular polyamines. <i>Nucleic Acids Research</i> , 2009 , 37, 7623-37	5.6 3.5 8.8 10.1 20.1	29 81 60 169 66

57	RNA-binding proteins implicated in the hypoxic response. <i>Journal of Cellular and Molecular Medicine</i> , 2009 , 13, 2759-69	5.6	63
56	Ubiquitin-mediated proteolysis of HuR by heat shock. <i>EMBO Journal</i> , 2009 , 28, 1271-82	13	124
55	miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3RJTR microRNA recognition elements. <i>Molecular Cell</i> , 2009 , 35, 610-25	17.6	487
54	Factors interacting with HIF-1alpha mRNA: novel therapeutic targets. <i>Current Pharmaceutical Design</i> , 2009 , 15, 3853-60	3.3	45
53	Tissue- and age-dependent expression of RNA-binding proteins that influence mRNA turnover and translation. <i>Aging</i> , 2009 , 1, 681-98	5.6	58
52	HuR and AUF1 Competitively Bind to the JunD mRNA and Regulate its Stability in Intestinal Epithelial Cells. <i>FASEB Journal</i> , 2009 , 23, 979.6	0.9	
51	AsSIRTing the DNA damage response. <i>Trends in Cell Biology</i> , 2008 , 18, 77-83	18.3	58
50	Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence. <i>Biological Chemistry</i> , 2008 , 389, 243-55	4.5	199
49	RNA-binding proteins HuR and PTB promote the translation of hypoxia-inducible factor 1alpha. <i>Molecular and Cellular Biology</i> , 2008 , 28, 93-107	4.8	223
48	MKP-1 mRNA stabilization and translational control by RNA-binding proteins HuR and NF90. <i>Molecular and Cellular Biology</i> , 2008 , 28, 4562-75	4.8	190
47	Modification at HuR(S242) alters HuR localization and proliferative influence. <i>Cell Cycle</i> , 2008 , 7, 3371-7	4.7	57
46	Protecting the stress response, guarding the MKP-1 mRNA. <i>Cell Cycle</i> , 2008 , 7, 2640-2	4.7	23
45	Phosphorylated HuR shuttles in cycles. <i>Cell Cycle</i> , 2008 , 7, 3124-6	4.7	63
44	miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 20297-302	11.5	174
43	Nuclear HuR accumulation through phosphorylation by Cdk1. <i>Genes and Development</i> , 2008 , 22, 1804-1	512.6	158
42	Mitogen-activated protein kinase kinase 4/c-Jun NH2-terminal kinase kinase 1 protein expression is subject to translational regulation in prostate cancer cell lines. <i>Molecular Cancer Research</i> , 2008 , 6, 501-	8 ^{6.6}	15
41	Polyamines modulate the subcellular localization of RNA-binding protein HuR through AMP-activated protein kinase-regulated phosphorylation and acetylation of importin alpha1. <i>Biochemical Journal</i> , 2008 , 409, 389-98	3.8	48
40	p16(INK4a) translation suppressed by miR-24. <i>PLoS ONE</i> , 2008 , 3, e1864	3.7	207

(2004-2007)

39	Analysis of turnover and translation regulatory RNA-binding protein expression through binding to cognate mRNAs. <i>Molecular and Cellular Biology</i> , 2007 , 27, 6265-78	4.8	169
38	Posttranscriptional orchestration of an anti-apoptotic program by HuR. <i>Cell Cycle</i> , 2007 , 6, 1288-92	4.7	197
37	Elucidation of a C-rich signature motif in target mRNAs of RNA-binding protein TIAR. <i>Molecular and Cellular Biology</i> , 2007 , 27, 6806-17	4.8	65
36	Polyamines regulate the stability of activating transcription factor-2 mRNA through RNA-binding protein HuR in intestinal epithelial cells. <i>Molecular Biology of the Cell</i> , 2007 , 18, 4579-90	3.5	62
35	Phosphorylation of HuR by Chk2 regulates SIRT1 expression. <i>Molecular Cell</i> , 2007 , 25, 543-57	17.6	437
34	En masse nascent transcription analysis to elucidate regulatory transcription factors. <i>Nucleic Acids Research</i> , 2006 , 34, 1492-500	20.1	13
33	Polyamine depletion increases cytoplasmic levels of RNA-binding protein HuR leading to stabilization of nucleophosmin and p53 mRNAs. <i>Journal of Biological Chemistry</i> , 2006 , 281, 19387-94	5.4	103
32	Translational control of cytochrome c by RNA-binding proteins TIA-1 and HuR. <i>Molecular and Cellular Biology</i> , 2006 , 26, 3295-307	4.8	162
31	Translational repression by RNA-binding protein TIAR. <i>Molecular and Cellular Biology</i> , 2006 , 26, 2716-27	4.8	119
30	Stability regulation of mRNA and the control of gene expression. <i>Annals of the New York Academy of Sciences</i> , 2005 , 1058, 196-204	6.5	81
29	Antiapoptotic function of RNA-binding protein HuR effected through prothymosin alpha. <i>EMBO Journal</i> , 2005 , 24, 1852-62	13	141
28	Increased stability of the p16 mRNA with replicative senescence. <i>EMBO Reports</i> , 2005 , 6, 158-64	6.5	80
27	Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability. <i>BMC Genomics</i> , 2005 , 6, 75	4.5	142
26	Enhanced proliferation of cultured human vascular smooth muscle cells linked to increased function of RNA-binding protein HuR. <i>Journal of Biological Chemistry</i> , 2005 , 280, 22819-26	5.4	57
25	Identification and functional outcome of mRNAs associated with RNA-binding protein TIA-1. <i>Molecular and Cellular Biology</i> , 2005 , 25, 9520-31	4.8	188
24	HuR: post-transcriptional paths to malignancy. RNA Biology, 2005, 2, 11-3	4.8	207
23	Identification of a target RNA motif for RNA-binding protein HuR. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 2987-92	11.5	414
22	Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. <i>EMBO Journal</i> , 2004 , 23, 3092-102	13	403

21	Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. <i>Science</i> , 2004 , 305, 390-2	33.3	1610
20	Global analysis of HuR-regulated gene expression in colon cancer systems of reducing complexity. <i>Gene Expression</i> , 2004 , 12, 49-59	3.4	35
19	RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 8354-9	11.5	377
18	Influence of the RNA-binding protein HuR in pVHL-regulated p53 expression in renal carcinoma cells. <i>Molecular and Cellular Biology</i> , 2003 , 23, 7083-95	4.8	104
17	HuR in the Mammalian Genotoxic Response: Post-Transcriptional Multitasking. Cell Cycle, 2003, 2, 411-4	143 ₇	90
16	von Hippel-Lindau protein-mediated repression of tumor necrosis factor alpha translation revealed through use of cDNA arrays. <i>Molecular and Cellular Biology</i> , 2003 , 23, 2316-28	4.8	73
15	Role of the RNA-binding protein HuR in colon carcinogenesis. <i>Oncogene</i> , 2003 , 22, 7146-54	9.2	226
14	Role of HuR in skeletal myogenesis through coordinate regulation of muscle differentiation genes. <i>Molecular and Cellular Biology</i> , 2003 , 23, 4991-5004	4.8	151
13	HuR in the mammalian genotoxic response: post-transcriptional multitasking. <i>Cell Cycle</i> , 2003 , 2, 412-4	4.7	69
12	Serial analysis of gene expression in renal carcinoma cells reveals VHL-dependent sensitivity to TNFalpha cytotoxicity. <i>Oncogene</i> , 2002 , 21, 929-36	9.2	32
11	AMP-activated kinase regulates cytoplasmic HuR. <i>Molecular and Cellular Biology</i> , 2002 , 22, 3425-36	4.8	190
10	Loss of HuR is linked to reduced expression of proliferative genes during replicative senescence. <i>Molecular and Cellular Biology</i> , 2001 , 21, 5889-98	4.8	149
9	HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. <i>EMBO Journal</i> , 2000 , 19, 2340-50	13	375
8	HuR regulates p21 mRNA stabilization by UV light. <i>Molecular and Cellular Biology</i> , 2000 , 20, 760-9	4.8	462
7	Down-Regulation of Cyclin D1 Expression by Prostaglandin A2 Is Mediated by Enhanced Cyclin D1 mRNA Turnover. <i>Molecular and Cellular Biology</i> , 2000 , 20, 7903-7913	4.8	2
6	Activation of the cholesterol pathway and Ras maturation in response to stress. <i>Oncogene</i> , 1999 , 18, 6021-8	9.2	33
5	Protective function of von Hippel-Lindau protein against impaired protein processing in renal carcinoma cells. <i>Molecular and Cellular Biology</i> , 1999 , 19, 1289-300	4.8	62
4	p21(Waf1/Cip1) protects against p53-mediated apoptosis of human melanoma cells. <i>Oncogene</i> , 1997 , 14, 929-35	9.2	279

LIST OF PUBLICATIONS

3	p27Kip1 overexpression causes apoptotic death of mammalian cells. <i>Oncogene</i> , 1997 , 15, 2991-7	9.2	195
2	Induction of mitogen-activated protein kinase phosphatase-1 during acute hypertension. <i>Hypertension</i> , 1997 , 30, 106-11	8.5	22
1	Serial analysis of gene expression in renal carcinoma cells reveals VHL-dependent sensitivity to TNFIcytotoxicity		1