Xuning Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/2099923/xuning-li-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

44 3,079 27 46 g-index

46 4,155 11 5.55 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
44	Single Cobalt Atoms Anchored on Porous N-Doped Graphene with Dual Reaction Sites for Efficient Fenton-like Catalysis. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12469-12475	16.4	551
43	Fe Co3D4 nanocages derived from nanoscale metalBrganic frameworks for removal of bisphenol A by activation of peroxymonosulfate. <i>Applied Catalysis B: Environmental</i> , 2016 , 181, 788-799	21.8	285
42	Elucidating the Electrocatalytic CO Reduction Reaction over a Model Single-Atom Nickel Catalyst. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 798-803	16.4	187
41	Identifying Active Sites of Nitrogen-Doped Carbon Materials for the CO2 Reduction Reaction. <i>Advanced Functional Materials</i> , 2018 , 28, 1800499	15.6	179
40	Topotactic Transformation of Metal-Organic Frameworks to Graphene-Encapsulated Transition-Metal Nitrides as Efficient Fenton-like Catalysts. <i>ACS Nano</i> , 2016 , 10, 11532-11540	16.7	174
39	In Situ/Operando Techniques for Characterization of Single-Atom Catalysts. ACS Catalysis, 2019 , 9, 2527	-2531	173
38	Excellent photo-Fenton catalysts of Fetto Prussian blue analogues and their reaction mechanism study. <i>Applied Catalysis B: Environmental</i> , 2015 , 179, 196-205	21.8	153
37	Supported Noble-Metal Single Atoms for Heterogeneous Catalysis. <i>Advanced Materials</i> , 2019 , 31, e1902	2031	115
36	Boosting Fenton-Like Reactions via Single Atom Fe Catalysis. <i>Environmental Science & Eamp; Technology</i> , 2019 , 53, 11391-11400	10.3	105
35	In Situ/Operando Characterization Techniques to Probe the Electrochemical Reactions for Energy Conversion. <i>Small Methods</i> , 2018 , 2, 1700395	12.8	90
34	Direct Growth of Carbon Nanotubes Doped with Single Atomic FeN4 Active Sites and Neighboring Graphitic Nitrogen for Efficient and Stable Oxygen Reduction Electrocatalysis. <i>Advanced Functional Materials</i> , 2019 , 29, 1906174	15.6	89
33	Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. <i>Science Advances</i> , 2020 , 6,	14.3	86
32	Identification of the Electronic and Structural Dynamics of Catalytic Centers in Single-Fe-Atom Material. <i>CheM</i> , 2020 , 6, 3440-3454	16.2	79
31	Prussian blue/TiO2 nanocomposites as a heterogeneous photo-Fenton catalyst for degradation of organic pollutants in water. <i>Catalysis Science and Technology</i> , 2015 , 5, 504-514	5.5	67
30	Unique role of Māsbauer spectroscopy in assessing structural features of heterogeneous catalysts. <i>Applied Catalysis B: Environmental</i> , 2018 , 224, 518-532	21.8	58
29	Atomic-scale topochemical preparation of crystalline Fe3+-doped ENi(OH)2 for an ultrahigh-rate oxygen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7753-7758	13	57
28	Graphene encapsulated FexCoy nanocages derived from metalBrganic frameworks as efficient activators for peroxymonosulfate. <i>Catalysis Science and Technology</i> , 2016 , 6, 7486-7494	5.5	54

(2020-2016)

A "copolymer-co-morphology" conception for shape-controlled synthesis of Prussian blue analogues and as-derived spinel oxides. <i>Nanoscale</i> , 2016 , 8, 2333-42	7.7	47
Oxygen evolution reaction over Fe site of BaZr x Fe 1-x O 3-perovskite oxides. <i>Electrochimica Acta</i> , 2017 , 241, 433-439	6.7	43
Facile synthesis of iron oxide coupled and doped titania nanocomposites: tuning of physicochemical and photocatalytic properties. <i>RSC Advances</i> , 2016 , 6, 72791-72802	3.7	37
Zinc-modulated Feto Prussian blue analogues with well-controlled morphologies for the efficient sorption of cesium. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 3284-3292	13	36
A Co-Fe Prussian blue analogue for efficient Fenton-like catalysis: the effect of high-spin cobalt. <i>Chemical Communications</i> , 2019 , 55, 7151-7154	5.8	34
Enhancement of oxygen evolution performance through synergetic action between NiFe metal core and NiFeO shell. <i>Chemical Communications</i> , 2016 , 52, 11803-11806	5.8	34
Catalyst: Single-Atom Catalysis: Directing the Way toward the Nature of Catalysis. <i>CheM</i> , 2019 , 5, 2733-	276.5	34
Effect of structural defects on activated carbon catalysts in catalytic wet peroxide oxidation of m-cresol. <i>Catalysis Today</i> , 2015 , 258, 120-131	5.3	32
Layered Fe-Substituted LiNiO2 Electrocatalysts for High-Efficiency Oxygen Evolution Reaction. <i>ACS Energy Letters</i> , 2017 , 2, 1654-1660	20.1	31
A Fe-N-C catalyst with highly dispersed iron in carbon for oxygen reduction reaction and its application in direct methanol fuel cells. <i>Chinese Journal of Catalysis</i> , 2016 , 37, 539-548	11.3	31
Amorphous Multimetal Alloy Oxygen Evolving Catalysts 2020 , 2, 624-632		25
Shape-Controlled Synthesis of Metal-Organic Frameworks with Adjustable Fenton-Like Catalytic Activity. <i>ACS Applied Materials & Activity ACS Activ</i>	9.5	24
Influence of Fe(III) doping on the crystal structure and properties of hydrothermally prepared ENi(OH)2 nanostructures. <i>Journal of Alloys and Compounds</i> , 2018 , 750, 687-695	5.7	22
Hydrazine drastically promoted Fenton oxidation of bisphenol A catalysed by a FeIII © o Prussian blue analogue. <i>Catalysis Communications</i> , 2016 , 77, 32-36	3.2	22
Surface modification of sewage sludge derived carbonaceous catalyst for m-cresol catalytic wet peroxide oxidation and degradation mechanism. <i>RSC Advances</i> , 2015 , 5, 41867-41876	3.7	22
Elucidating the Electrocatalytic CO2 Reduction Reaction over a Model Single-Atom Nickel Catalyst. <i>Angewandte Chemie</i> , 2020 , 132, 808-813	3.6	22
Promotional effect of Mn-doping on the structure and performance of spinel ferrite microspheres for CO hydrogenation. <i>Journal of Catalysis</i> , 2020 , 381, 150-162	7.3	20
Exploring the Reaction Paths in the Consecutive Fe-Based FT Catalyst Deolite Process for Syngas Conversion. <i>ACS Catalysis</i> , 2020 , 10, 3797-3806	13.1	14
	analogues and as-derived spinel oxides. <i>Nanoscale</i> , 2016, 8, 2333-42 Oxygen evolution reaction over Fe site of BaZr x Fe 1-x O 3-iperovskite oxides. <i>Electrochimica Acta</i> , 2017, 241, 433-439 Facile synthesis of iron oxide coupled and doped titania nanocomposites: tuning of physicochemical and photocatalytic properties. <i>RSC Advances</i> , 2016, 6, 72791-72802 Zinc-modulated Fetio Prussian blue analogues with well-controlled morphologies for the efficient sorption of cesium. <i>Journal of Materials Chemistry A</i> , 2017, 5, 3284-3292 A Co-Fe Prussian blue analogue for efficient Fenton-like catalysis: the effect of high-spin cobalt. <i>Chemical Communications</i> , 2019, 55, 7151-7154 Enhancement of oxygen evolution performance through synergetic action between NiFe metal core and NiFeO shell. <i>Chemical Communications</i> , 2016, 52, 11803-11806 Catalyst: Single-Atom Catalysis: Directing the Way toward the Nature of Catalysis. <i>CheM</i> , 2019, 5, 2733- Effect of structural defects on activated carbon catalysts in catalytic wet peroxide oxidation of m-cresol. <i>Catalysis Today</i> , 2015, 258, 120-131 Layered Fe-Substituted LiNiO2 Electrocatalysts for High-Efficiency Oxygen Evolution Reaction. <i>ACS Energy Letters</i> , 2017, 2, 1654-1660 A Fe-N-C catalyst with highly dispersed iron in carbon for oxygen reduction reaction and its application in direct methanol fuel cells. <i>Chinese Journal of Catalysis</i> , 2016, 37, 539-548 Amorphous Multimetal Alloy Oxygen Evolving Catalysts 2020, 2, 624-632 Shape-Controlled Synthesis of Metal-Organic Frameworks with Adjustable Fenton-Like Catalytic Activity. <i>ACS Applied Materials & amp: Interfaces</i> , 2018, 10, 38051-38056 Influence of Fe(III) doping on the crystal structure and properties of hydrothermally prepared BNi(OH)2 nanostructures. <i>Journal of Alloys and Compounds</i> , 2018, 750, 687-695 Hydrazine drastically promoted Fenton oxidation of bisphenol A catalysed by a FeIIIto Prussian blue analogue. <i>Catalysis Communications</i> , 2016, 77, 32-36 Surface modification of sewage sludge derived carbonace	analogues and as-derived spinel oxides. Nanoscale, 2016, 8, 2333-42 Oxygen evolution reaction over Fe site of BaZr x Fe 1-x O 3-therovskite oxides. Electrochimica Acta, 2017, 241, 433-439 Facile synthesis of iron oxide coupled and doped titania nanocomposites: tuning of physicochemical and photocatalytic properties. RSC Advances, 2016, 6, 72791-72802 3.7 Zinc-modulated Fetto Prussian blue analogues with well-controlled morphologies for the efficient sorption of cesium. Journal of Materials Chemistry A, 2017, 5, 3284-3292 A Co-Fe Prussian blue analogue for efficient Fenton-like catalysis: the effect of high-spin cobalt. Chemical Communications, 2019, 55, 7151-7154 Enhancement of oxygen evolution performance through synergetic action between NiFe metal core and NiFeO shell. Chemical Communications, 2016, 52, 11803-11806 Catalyst: Single-Atom Catalysis: Directing the Way toward the Nature of Catalysis. CheM, 2019, 5, 2733-2765 Effect of structural defects on activated carbon catalysts in catalytic wet peroxide oxidation of m-cresol. Catalysis Today, 2015, 256, 120-131 Layered Fe-Substituted LiNiO2 Electrocatalysts for High-Efficiency Oxygen Evolution Reaction. ACS 20.1 A Fe-N-C catalysts with highly dispersed iron in carbon for oxygen reduction reaction and its application in direct methanol fuel cells. Chinese Journal of Catalysis, 2016, 37, 539-548 Amorphous Multimetal Alloy Oxygen Evoluting Catalysts 2020, 2, 624-632 Shape-Controlled Synthesis of Metal-Organic Frameworks with Adjustable Fenton-Like Catalytic Activity. ACS Applied Materials & amp; Interfaces, 2018, 10, 38051-38056 Influence of Fe(III) doping on the crystal structure and properties of hydrothermally prepared BNI(OH)2 nanostructures. Journal of Alloys and Compounds, 2018, 750, 687-695 Syracine drastically promoted Fenton oxidation of bisphenol A catalysed by a Fellitto Prussian blue analogue. Catalysis Communications, 2016, 77, 32-36 Surface modification of sewage sludge derived carbonaceous catalyst for m-cresol catalytic wet perox

9	Unveiling the In Situ Generation of a Monovalent Fe(I) Site in the Single-Fe-Atom Catalyst for Electrochemical CO2 Reduction. <i>ACS Catalysis</i> , 2021 , 11, 7292-7301	13.1	14
8	Topotactically constructed nickeliton (oxy)hydroxide with abundant in-situ produced high-valent iron species for efficient water oxidation. <i>Journal of Energy Chemistry</i> , 2021 , 57, 212-218	12	11
7	Crystal structure refinement of the electron-transfer-active potassium manganese hexacyanoferrates and isomorphous potassium manganese hexacyanocobaltates. <i>Journal of Solid State Chemistry</i> , 2015 , 227, 35-44	3.3	7
6	In situ/operando MBsbauer spectroscopy for probing heterogeneous catalysis. <i>Chem Catalysis</i> , 2021 , 1, 1215-1215		4
5	Mechanistic understanding and design of non-noble metal-based single-atom catalysts supported on two-dimensional materials for CO2 electroreduction. <i>Journal of Materials Chemistry A</i> ,	13	2
4	Fe-N-C Catalysts: Direct Growth of Carbon Nanotubes Doped with Single Atomic Fe N 4 Active Sites and Neighboring Graphitic Nitrogen for Efficient and Stable Oxygen Reduction Electrocatalysis (Adv. Funct. Mater. 49/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970332	15.6	2
3	Synthesis and Properties of Ni-doped Goethite and Ni-doped Hematite Nanorods. <i>Croatica Chemica Acta</i> , 2018 , 91,	0.8	2
2	Innentitelbild: Elucidating the Electrocatalytic CO2 Reduction Reaction over a Model Single-Atom Nickel Catalyst (Angew. Chem. 2/2020). <i>Angewandte Chemie</i> , 2020 , 132, 518-518	3.6	1
1	A novel Zn-Al spinel-alumina composite supported gold catalyst for efficient CO oxidation. Chemical Communications, 2021, 57, 10335-10338	5.8	O