Junming Ho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2098930/publications.pdf

Version: 2024-02-01

		159525	138417
79	3,714	30	58
papers	citations	h-index	g-index
88	88	88	4595
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Comment on the Correct Use of Continuum Solvent Models. Journal of Physical Chemistry A, 2010, 114, 13442-13444.	1.1	432
2	A universal approach for continuum solvent pK a calculations: are we there yet?. Theoretical Chemistry Accounts, 2010, 125, 3-21.	0.5	408
3	Computational electrochemistry: prediction of liquid-phase reduction potentials. Physical Chemistry Chemical Physics, 2014, 16, 15068-15106.	1.3	407
4	Are thermodynamic cycles necessary for continuum solvent calculation of pK _a s and reduction potentials? Physical Chemistry Chemical Physics, 2015, 17, 2859-2868.	1.3	166
5	Eigenvector centrality for characterization of protein allosteric pathways. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12201-E12208.	3.3	145
6	Calculating Free Energy Changes in Continuum Solvation Models. Journal of Physical Chemistry B, 2016, 120, 1319-1329.	1.2	140
7	p <i>K</i> _a Calculation of Some Biologically Important Carbon Acids - An Assessment of Contemporary Theoretical Procedures. Journal of Chemical Theory and Computation, 2009, 5, 295-306.	2.3	131
8	Firstâ€principles prediction of acidities in the gas and solution phase. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 649-660.	6.2	94
9	Tryptamine Synthesis by Iron Porphyrin Catalyzed Câ^H Functionalization of Indoles with Diazoacetonitrile. Angewandte Chemie - International Edition, 2019, 58, 3630-3634.	7.2	92
10	Predicting pKa in Implicit Solvents: Current Status and Future Directions. Australian Journal of Chemistry, 2014, 67, 1441.	0.5	91
11	Structure–function relationships of donor–acceptor Stenhouse adduct photochromic switches. Chemical Science, 2018, 9, 8242-8252.	3.7	89
12	Photoinduced Protonâ€Transfer Reactions for Mild Oâ€H Functionalization of Unreactive Alcohols. Angewandte Chemie - International Edition, 2020, 59, 5562-5566.	7.2	81
13	pH-Regulated Nonelectrogenic Anion Transport by Phenylthiosemicarbazones. Journal of the American Chemical Society, 2016, 138, 8301-8308.	6.6	75
14	Tropylium-promoted carbonyl–olefin metathesis reactions. Chemical Science, 2018, 9, 5145-5151.	3.7	68
15	Just add sugar forÂcarbohydrate induced self-assembly of curcumin. Nature Communications, 2019, 10, 582.	5.8	57
16	Machine-Learning-Assisted Free Energy Simulation of Solution-Phase and Enzyme Reactions. Journal of Chemical Theory and Computation, 2021, 17, 5745-5758.	2.3	55
17	Harnessing entropy to direct the bonding/debonding of polymer systems based on reversible chemistry. Chemical Science, 2013, 4, 2752.	3.7	49
18	Accurate Line Shapes from Sub-1 cm ^{–1} Resolution Sum Frequency Generation Vibrational Spectroscopy of α-Pinene at Room Temperature. Journal of Physical Chemistry A, 2015, 119, 1292-1302.	1.1	49

#	Article	IF	Citations
19	Accuracy of DLPNO-CCSD(T): Effect of Basis Set and System Size. Journal of Physical Chemistry A, 2021, 125, 1553-1563.	1.1	48
20	First-Principles Prediction of the p <i>K</i> _a s of Anti-inflammatory Oxicams. Journal of Physical Chemistry A, 2010, 114, 11992-12003.	1.1	44
21	N-Heterocyclic Olefin Catalyzed Silylation and Hydrosilylation Reactions of Hydroxyl and Carbonyl Compounds. Organic Letters, 2017, 19, 1398-1401.	2.4	43
22	Electron Transfer Assisted by Vibronic Coupling from Multiple Modes. Journal of Chemical Theory and Computation, 2017, 13, 6000-6009.	2.3	41
23	Quantum Chemical Prediction of Equilibrium Acidities of Ureas, Deltamides, Squaramides, and Croconamides. Journal of Organic Chemistry, 2017, 82, 10732-10736.	1.7	40
24	Chloroform as a Hydrogen Atom Donor in Barton Reductive Decarboxylation Reactions. Journal of Organic Chemistry, 2013, 78, 6677-6687.	1.7	39
25	Corey–Chaykovsky Reactions of Nitro Styrenes Enable <i>cis</i> Configured Trifluoromethyl Cyclopropanes. Journal of Organic Chemistry, 2017, 82, 8220-8227.	1.7	39
26	Predicting Octanol–Water Partition Coefficients: Are Quantum Mechanical Implicit Solvent Models Better than Empirical Fragment-Based Methods?. Journal of Physical Chemistry B, 2019, 123, 6810-6822.	1.2	38
27	Rhenium(I) tricarbonyl complexes of salicylaldehyde semicarbazones: Synthesis, crystal structures and cytotoxicity. Journal of Inorganic Biochemistry, 2013, 119, 10-20.	1.5	35
28	Deltamides and Croconamides: Expanding the Range of Dual Hâ€bond Donors for Selective Anion Recognition. Chemistry - A European Journal, 2018, 24, 1140-1150.	1.7	34
29	Tropylium Ion Catalyzes Hydration Reactions of Alkynes. European Journal of Organic Chemistry, 2018, 2018, 3974-3981.	1.2	33
30	"Waterâ€inâ€Sugar―Electrolytes Enable Ultrafast and Stable Electrochemical Naked Proton Storage. Small, 2021, 17, e2102375.	5.2	33
31	Nanosecond Dynamics Regulate the MIFâ€Induced Activity of CD74. Angewandte Chemie - International Edition, 2018, 57, 7116-7119.	7.2	32
32	Visible‣ight Photoswitching by Azobenzazoles. Chemistry - A European Journal, 2020, 26, 1103-1110.	1.7	32
33	Resolution and Improved Synthesis of $(\hat{A}\pm)$ -Arsenicin A: A Natural Adamantane-Type Tetraarsenical Possessing Strong Anti-Acute Promelocytic Leukemia Cell Line Activity. Organometallics, 2012, 31, 1808-1816.	1.1	30
34	Accelerated computation of free energy profile at <i>ab initio</i> quantum mechanical/molecular mechanical accuracy <i>via</i> a semi-empirical reference potential. II. Recalibrating semi-empirical parameters with force matching. Physical Chemistry Chemical Physics, 2019, 21, 20595-20605.	1.3	30
35	Sum Frequency Generation Spectroscopy and Molecular Dynamics Simulations Reveal a Rotationally Fluid Adsorption State of α-Pinene on Silica. Journal of Physical Chemistry C, 2016, 120, 12578-12589.	1.5	29
36	Are Explicit Solvent Models More Accurate than Implicit Solvent Models? A Case Study on the Menschutkin Reaction. Journal of Physical Chemistry A, 2019, 123, 5580-5589.	1,1	26

#	Article	IF	CITATIONS
37	Hydrogenâ€Bond Disrupting Electrolytes for Fast and Stable Proton Batteries. Small, 2022, 18, e2201449.	5.2	26
38	Triplet–triplet energy transfer in artificial and natural photosynthetic antennas. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5513-E5521.	3.3	24
39	How accurate are approximate quantum chemical methods at modelling solute–solvent interactions in solvated clusters?. Physical Chemistry Chemical Physics, 2020, 22, 3855-3866.	1.3	24
40	NHCâ€Catalyzed Metathesis and Phosphorylation Reactions of Disulfides: Development and Mechanistic Insights. Chemistry - A European Journal, 2017, 23, 6259-6263.	1.7	22
41	Halide Anion Triggered Reactions of Michael Acceptors with Tropylium Ion. Angewandte Chemie - International Edition, 2020, 59, 1455-1459.	7.2	22
42	Anion Binding Affinity: Acidity versus Conformational Effects. Journal of Organic Chemistry, 2020, 85, 8074-8084.	1.7	20
43	The Distal Effect of Electron-Withdrawing Groups and Hydrogen Bonding on the Stability of Peptide Enolates. Journal of the American Chemical Society, 2010, 132, 5515-5521.	6.6	19
44	Protonated Alcohols Are Examples of Complete Charge-Shift Bonds. Journal of Organic Chemistry, 2014, 79, 9998-10001.	1.7	19
45	Synthesis of (±)â€Panduratin A and Related Natural Products Using the High Pressure Diels–Alder Reaction. Asian Journal of Organic Chemistry, 2013, 2, 60-63.	1.3	17
46	MoD-QM/MM Structural Refinement Method: Characterization of Hydrogen Bonding in the <i>Oxytricha nova</i> G-Quadruplex. Journal of Chemical Theory and Computation, 2014, 10, 5125-5135.	2.3	16
47	Eisenporphyrinâ€katalysierte Câ€Hâ€Funktionalisierung von Indol mit Diazoacetonitril für die Synthese von Tryptaminen. Angewandte Chemie, 2019, 131, 3669-3673.	1.6	16
48	Unanticipated Stickiness of α-Pinene. Journal of Physical Chemistry A, 2017, 121, 3239-3246.	1.1	14
49	Do Better Quality Embedding Potentials Accelerate the Convergence of QM/MM Models? The Case of Solvated Acid Clusters. Molecules, 2018, 23, 2466.	1.7	11
50	Techniques For Studies Of Electrochemical Reactions In Solution., 2015, , 117-188.		10
51	Photoinduzierte Protonentransferreaktionen f $\tilde{A}^{1}\!\!/\!4$ r milde O \hat{a} H \hat{a} Funktionalisierungsreaktionen unreaktiver Alkohole. Angewandte Chemie, 2020, 132, 5608-5613.	1.6	10
52	Validation of the Distal Effect of Electron-Withdrawing Groups on the Stability of Peptide Enolates and Its Exploitation in the Controlled Stereochemical Inversion of Amino Acid Derivatives. Journal of Organic Chemistry, 2011, 76, 5907-5914.	1.7	9
53	Evaluation of a chiral cubane-based Schiff base ligand in asymmetric catalysis reactions. Beilstein Journal of Organic Chemistry, 2012, 8, 1814-1818.	1.3	9
54	Explanation of Substituent Effects on the Enolization of \hat{l}^2 -Diketones and \hat{l}^2 -Ketoesters. Journal of Chemical Education, 2021, 98, 1043-1048.	1.1	9

#	Article	IF	CITATIONS
55	Accurate Quantum Chemical Prediction of Gas-Phase Anion Binding Affinities and Their Structure-Binding Relationships. Journal of Physical Chemistry A, 2021, 125, 9838-9851.	1.1	9
56	The Distal Effect of N-Electron-withdrawing Groups on the Stability of Peptide Carbon Radicals. Australian Journal of Chemistry, 2011, 64, 403.	0.5	8
57	Rigid Body Brownian Dynamics as a Tool for Studying Ion Channel Blockers. Journal of Physical Chemistry B, 2012, 116, 1933-1941.	1.2	8
58	On the mechanism of protein supercharging in electrospray ionisation mass spectrometry: Effects on charging of additives with short- and long-chain alkyl constituents with carbonate and sulphite terminal groups. Analytica Chimica Acta: X, 2019, 1, 100004.	2.8	8
59	Diaminomethylenemalononitriles and Diaminomethyleneindanediones as Dual Hydrogen Bond Donors for Anion Recognition. Journal of Organic Chemistry, 2021, 86, 4957-4964.	1.7	8
60	On the Accuracy of QM/MM Models: A Systematic Study of Intramolecular Proton Transfer Reactions of Amino Acids in Water. Journal of Physical Chemistry B, 2021, 125, 9304-9316.	1.2	8
61	Reversible Cyclopropane Ring-Cleavage Reactions within Etheno-Bridged [4.3.1]Propelladiene Frameworks Leading to Aza- and Oxa-[5.6.5.6]fenestratetraenes. Chemistry - A European Journal, 2012, 18, 13585-13588.	1.7	7
62	Mechanistic Studies on the Base-Promoted Conversion of Alkoxy-Substituted, Ring-Fused <i>gem</i> -Dihalocyclopropanes into Furans: Evidence for a Process Involving Electrocyclic Ring Closure of a Carbonyl Ylide Intermediate. Journal of Organic Chemistry, 2018, 83, 13678-13690.	1.7	7
63	Electronic Structure and Triplet–Triplet Energy Transfer in Artificial Photosynthetic Antennas. Photochemistry and Photobiology, 2019, 95, 211-219.	1.3	7
64	Nontargeted Identification of Plasma Proteins O-, N-, and S-Transmethylated by O-Methyl Organophosphates. Analytical Chemistry, 2020, 92, 15420-15428.	3.2	7
65	Approximating Coupled Cluster Level Vibrational Frequencies with Composite Methods. Journal of Physical Chemistry A, 2006, 110, 2796-2800.	1.1	6
66	Assessment of several machine learning methods towards reliable prediction of hormone receptor binding affinity. Chemical Data Collections, 2017, 9-10, 114-124.	1.1	6
67	Probing the remarkable thermal kinetics of visual rhodopsin with E181Q and S186A mutants. Journal of Chemical Physics, 2017, 146, 215104.	1.2	6
68	Origin and Prediction of Highly Specific Bond Cleavage Sites in the Thermal Activation of Intact Protein Ions. Chemistry - A European Journal, 2019, 25, 823-834.	1.7	6
69	Polyphenylglyoxamide-Based Amphiphilic Small Molecular Peptidomimetics as Antibacterial Agents with Anti-Biofilm Activity. International Journal of Molecular Sciences, 2021, 22, 7344.	1.8	6
70	Predicting Octanol–Water Partition Coefficients of Fluorinated Drug-Like Molecules: A Combined Experimental and Theoretical Study. Australian Journal of Chemistry, 2020, 73, 677.	0.5	6
71	Peptidomimetic Star Polymers for Targeting Biological Ion Channels. PLoS ONE, 2016, 11, e0152169.	1.1	5
72	The MOD-QM/MM Method. Methods in Enzymology, 2016, 577, 443-481.	0.4	4

#	Article	IF	CITATIONS
73	Substituent effects in solid-state assembly of activated benzotriazoles. CrystEngComm, 2019, 21, 835-842.	1.3	4
74	Halide Anion Triggered Reactions of Michael Acceptors with Tropylium Ion. Angewandte Chemie, 2020, 132, 1471-1475.	1.6	4
75	Accelerating the Calculation of Solute–Solvent Interaction Energies through Systematic Molecular Fragmentation. Journal of Physical Chemistry A, 2019, 123, 8476-8484.	1.1	3
76	Sugar-substituted fluorous 1,2,3-triazoles: Helical twists in fluoroalkyl chains and their molecular association in the solid state and correlations with physicochemical properties. Journal of Fluorine Chemistry, 2020, 236, 109536.	0.9	3
77	Nanosecond Dynamics Regulate the MIFâ€Induced Activity of CD74. Angewandte Chemie, 2018, 130, 7234-7237.	1.6	2
78	The Effect of Vicinal Difluorination on the Conformation and Potency of Histone Deacetylase Inhibitors. Molecules, 2021, 26, 3974.	1.7	1
79	Development of an Albumin–Polymer Bioconjugate via Covalent Conjugation and Supramolecular Interactions. Bioconjugate Chemistry, 2022, 33, 321-332.	1.8	1