Benjamin L Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/209863/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemistry of Tris(pentamethylcyclopentadienyl) f-Element Complexes, (C5Me5)3M. Chemical Reviews, 2002, 102, 2119-2136.	47.7	293
2	Efficient Regeneration of Partially Spent Ammonia Borane Fuel. Angewandte Chemie - International Edition, 2009, 48, 6812-6816.	13.8	226
3	Calcium Amidotrihydroborate: A Hydrogen Storage Material. Angewandte Chemie - International Edition, 2007, 46, 8995-8997.	13.8	224
4	Synthesis and Comparative η1-Alkyl and Sterically Induced Reduction Reactivity of (C5Me5)3Ln Complexes of La, Ce, Pr, Nd, and Sm. Organometallics, 2005, 24, 3916-3931.	2.3	124
5	Potassium(I) Amidotrihydroborate: Structure and Hydrogen Release. Journal of the American Chemical Society, 2010, 132, 11836-11837.	13.7	112
6	C-H bond activation through steric crowding of normally inert ligands in the sterically crowded gadolinium and yttrium (C5Me5)3M complexes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12678-12683.	7.1	94
7	Synthesis, Structure, and Catalytic Reactions of 1,2-Bis(indenyl)ethane-Derived Lanthanocenes. Organometallics, 1999, 18, 2125-2132.	2.3	80
8	Synthesis and Structure of Tris(alkyl- and silyl-tetramethylcyclopentadienyl) Complexes of Lanthanum. Inorganic Chemistry, 2001, 40, 6341-6348.	4.0	63
9	Recycle of tin thiolate compounds relevant to ammonia–boraneregeneration. Chemical Communications, 2010, 46, 148-149.	4.1	51
10	Metallocene Allyl Reactivity in the Presence of Alkenes Tethered to Cyclopentadienyl Ligands. Organometallics, 2005, 24, 2269-2278.	2.3	50
11	Structural studies of lanthanide and yttrium metallocene oxides. Journal of Organometallic Chemistry, 2003, 677, 89-95.	1.8	33
12	Structural studies of mono(pentamethylcyclopentadienyl)lanthanide complexes. Journal of Coordination Chemistry, 2006, 59, 1069-1087.	2.2	22
13	Lewis base assisted B–H bond redistribution in borazine and polyborazylene. Chemical Communications, 2013, 49, 9095.	4.1	21
14	Physical, structural, and dehydrogenation properties of ammonia borane in ionic liquids. RSC Advances, 2014, 4, 21681-21687.	3.6	19
15	Iron-iminopyridine complexes as charge carriers for non-aqueous redox flow battery applications. Energy Storage Materials, 2021, 37, 576-586.	18.0	18
16	N-substituted amine-borane ionic liquids as fluid phase, hydrogen storage materials. Journal of Materials Chemistry A, 2014, 2, 16507-16515.	10.3	15
17	Early-Lanthanide(III) Acetonitrile–Solvento Adducts with Iodide and Noncoordinating Anions. Inorganic Chemistry, 2015, 54, 11958-11968	4.0	12
18	Linked Picolinamide Nickel Complexes as Redox Carriers for Nonaqueous Flow Batteries. ChemSusChem, 2019, 12, 1304-1309.	6.8	11

BENJAMIN L DAVIS

#	Article	IF	CITATIONS
19	A Comparative Review of Metalâ€Based Charge Carriers in Nonaqueous Flow Batteries. ChemSusChem, 2021, 14, 1214-1228.	6.8	11
20	Impact of Ligand Substitutions on Multielectron Redox Properties of Fe Complexes Supported by Nitrogenous Chelates. ACS Omega, 2018, 3, 14766-14778.	3.5	10
21	Catalyst-Inspired Charge Carriers for High Energy Density Redox Flow Batteries. Frontiers in Physics, 2019, 6, .	2.1	9
22	Enabling ammonia-borane: co-oligomerizaiton of ammonia-borane and amine-boranes yield liquid products. Energy and Environmental Science, 2014, 7, 1653-1656.	30.8	8
23	Expanding the potential of redox carriers for flow battery applications. Journal of Materials Chemistry A, 2020, 8, 17808-17816.	10.3	5
24	Surface-Controlled Conversion of Ammonia Borane from Boron Nitride. Energies, 2020, 13, 5569.	3.1	3
25	Formation of benzodiazaborolanes from borazine. Main Group Chemistry, 2010, 9, 135-139.	0.8	2
26	A Comparative Review of Metalâ€Based Charge Carriers in Nonaqueous Flow Batteries. ChemSusChem, 2021, 14, 1213-1213.	6.8	0
27	Progress Toward High Voltage, High Cycle Life Non-Aqueous Flow Cells for Grid Scale Energy Storage. ECS Meeting Abstracts, 2018, , .	0.0	0
28	Development of High Capacity Metal-Ligand Electrolytes for Grid-Scale Non-Aqueous Redox Flow Battery. ECS Meeting Abstracts, 2018, , .	0.0	0
29	Combined Theoretical and Experimental Approach to Next Generation Flow Cell Charge Carriers for Grid Scale Energy Storage. ECS Meeting Abstracts, 2018, , .	0.0	0
30	Iron(tris pyridyl-imine) Complexes As Redox Couples for Non-Aqueous Redox Flow Battery Applications. ECS Meeting Abstracts, 2019, , .	0.0	0
31	Exploring Redox Active and Electrochemically Stable Organic Molecules for > 3 V Non-Aqueous Redox Flow Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 206-206.	0.0	0