Thomas Konrad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2098382/publications.pdf

Version: 2024-02-01

361045 264894 63 1,832 20 42 citations h-index g-index papers 63 63 63 1410 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Robust control of quantum systems by quantum systems. Physical Review A, 2021, 104, .	1.0	1
2	Superoscillations: a scale physics perspective. Journal of Physics A: Mathematical and Theoretical, 2019, 52, 465202.	0.7	1
3	Spatial mode detection by frequency upconversion. Optics Letters, 2019, 44, 586.	1.7	21
4	A versatile quantum walk resonator with bright classical light. PLoS ONE, 2019, 14, e0214891.	1.1	24
5	Quantum mechanics and classical light. Contemporary Physics, 2019, 60, 1-22.	0.8	53
6	Real-time state estimation and feedback control of an oscillating qubit via self-fulfilling prophecy (SFP). Metrologia, 2019, 56, 014003.	0.6	1
7	Turbulence and the Hong-Ou-Mandel effect. Physical Review A, 2018, 97, .	1.0	5
8	Quantum control through measurement feedback. Physical Review A, 2018, 97, .	1.0	10
9	The first iteration of Grover's algorithm using classical light with orbital angular momentum. Journal of Modern Optics, 2018, 65, 1942-1948.	0.6	15
10	Characterizing quantum channels with non-separable states of classical light. Nature Physics, 2017, 13, 397-402.	6.5	218
11	Quantum-key distribution with vector modes. , 2017, , .		O
12	Equation of motion for estimation fidelity of monitored oscillating qubits. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2293-2297.	0.9	2
13	Simultaneous entanglement swapping of multiple orbital angular momentum states of light. Nature Communications, 2017, 8, 632.	5. 8	73
14	A deterministic detector for vector vortex states. Scientific Reports, 2017, 7, 13882.	1.6	44
15	Hybrid entanglement for quantum information and communication applications. , 2017, , .		0
16	The effect of turbulence on entanglement-based free-space quantum key distribution with photonic orbital angular momentum. Journal of Optics (United Kingdom), 2016, 18, 064002.	1.0	29
17	Quantum computation with classical light: Implementation of the Deutsch–Jozsa algorithm. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1925-1931.	0.9	17
18	Implementation of Deutsch and Deutsch-Jozsa algorithms with classical light. Proceedings of SPIE, $2016, \ldots$	0.8	0

#	Article	IF	CITATIONS
19	Experimentally observed decay of high-dimensional entanglement through turbulence. Physical Review A, 2016, 94, .	1.0	30
20	Engineering two-photon high-dimensional states through quantum interference. Science Advances, 2016, 2, e1501165.	4.7	104
21	Measuring the nonseparability of vector vortex beams. Physical Review A, 2015, 92, .	1.0	146
22	Process tomography via sequential measurements on a single quantum system. Physical Review A, 2015, 92, .	1.0	10
23	Implementation of multidimensional quantum walks using linear optics and classical light. Physical Review A, 2015, 92, .	1.0	21
24	Quantum computation with classical light: The Deutsch Algorithm. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1675-1680.	0.9	38
25	Classical entanglement of vector vortex beams. , 2015, , .		0
26	Unitary equivalence of quantum walks. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 100-104.	0.9	13
27	Parameter dependence in the atmospheric decoherence of modally entangled photon pairs. Physical Review A, 2014, 90, .	1.0	28
28	The implementation of quantum walks using classical light. Proceedings of SPIE, 2014, , .	0.8	0
29	Encoding mutually unbiased bases in orbital angular momentum for quantum key distribution. Proceedings of SPIE, 2014, , .	0.8	0
30	The evolution of OAM-entanglement between two qutrits in turbulence. Proceedings of SPIE, 2014, , .	0.8	0
31	From Classical to Quantum Optics. , 2014, , 41-76.		0
32	Digital bi-photon spiral imaging. , 2014, , .		0
33	Qudit-Teleportation for photons with linear optics. Scientific Reports, 2014, 4, 4543.	1.6	37
34	Orbital-angular-momentum entanglement in turbulence. Physical Review A, 2013, 88, .	1.0	96
35	Implementing Quantum Walks Using Orbital Angular Momentum of Classical Light. Physical Review Letters, 2013, 110, 263602.	2.9	88
36	Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Physical Review A, 2013, 88, .	1.0	264

#	Article	IF	Citations
37	Structural features of non-Markovian open quantum systems using quantum chains. Physical Review A, 2013, 87, .	1.0	16
38	Implementation schemes for unsharp measurements with trapped ions. Physical Review A, 2013, 87, .	1.0	13
39	Teleporting photonic qudits using multimode quantum scissors. Scientific Reports, 2013, 3, 3548.	1.6	26
40	The decay of the orbital angular momentum entanglement in turbulence. , 2013, , .		5
41	Maintaining quantum coherence in the presence of noise through state monitoring. Physical Review A, 2012, 85, .	1.0	16
42	Unsharp continuous measurement of a Bose-Einstein condensate: Full quantum state estimation and the transition to classicality. Physical Review A, 2012, 86, .	1.0	10
43	Counting statistics of many-particle quantum walks. Physical Review A, 2011, 83, .	1.0	54
44	Parameter dependence of the decoherence of orbital angular momentum entanglement in atmospheric turbulence. , 2011 , , .		0
45	Monitoring the wave function by time continuous position measurement. New Journal of Physics, 2010, 12, 043038.	1.2	15
46	A necessary condition for the security of differential-phase-shift quantum key distribution. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 305302.	0.7	3
47	Amplitude damping of Laguerre-Gaussian modes. Optics Express, 2010, 18, 22789.	1.7	8
48	Equation of motion for entanglement. Quantum Information Processing, 2009, 8, 523-534.	1.0	11
49	A remark on Fuchs' Bayesian interpretation of quantum mechanics. Studies in History and Philosophy of Science Part B - Studies in History and Philosophy of Modern Physics, 2008, 39, 273-287.	1.4	5
50	Announcing single photons from imperfect sources by means of "interaction-free" measurements. European Physical Journal: Special Topics, 2008, 159, 93-99.	1.2	0
51	Evolution equation for quantum entanglement. Nature Physics, 2008, 4, 99-102.	6.5	141
52	Parameter estimation for mixed states from a single copy. Physical Review A, 2007, 75, .	1.0	2
53	Monitoring quantum oscillations with very small disturbance. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 361, 212-217.	0.9	8
54	Coupled Ito equations of continuous quantum state measurement and estimation. Journal of Physics A, 2006, 39, L575-L581.	1.6	17

THOMAS KONRAD

#	Article	IF	CITATIONS
55	Heralded single-photon generation using imperfect single-photon sources and a two-photon-absorbing medium. Physical Review A, 2006, 73, .	1.0	6
56	Production of heralded pure single photons from imperfect sources using cross-phase-modulation. Physical Review A, 2006, 74, .	1.0	6
57	Tracking the Oscillations of a Single Qubit by Means of Sequential Measurements. AIP Conference Proceedings, 2004, , .	0.3	1
58	Estimating the postmeasurement state. Physical Review A, 2003, 68, .	1.0	7
59	Evolution of a qubit under the influence of a succession of weak measurements with unitary feedback. Physical Review A, 2002, 66, .	1.0	20
60	Quantum-optical weak measurements can visualize photon dynamics in real time. Physical Review A, 2002, 65, .	1.0	16
61	Approximate Real–Time Visualization of a Quantum Transition by Means of Continuous Fuzzy Measurement. General Relativity and Gravitation, 2001, 33, 1165-1180.	0.7	1
62	Sequence of unsharp measurements enabling a real-time visualization of a quantum oscillation. Physical Review A, 2001 , 63 , .	1.0	28
63	Analytical linear perturbation theory for highly eccentric satellite orbits. Celestial Mechanics and Dynamical Astronomy, 1995, 61, 369-387.	0.5	8