Jordi Garcia Gomez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2097662/publications.pdf

Version: 2024-02-01

218677 276875 2,009 75 26 41 citations g-index h-index papers 89 89 89 1977 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Magnetoâ€optical Molecular Device: Interplay of Spin Crossover, Luminescence, Photomagnetism, and Photochromism. Angewandte Chemie - International Edition, 2017, 56, 15622-15627.	13.8	117
2	Preparation of benzolactams by Pd(<scp>ii</scp>)-catalyzed carbonylation of N-unprotected arylethylamines. Chemical Communications, 2011, 47, 1054-1056.	4.1	109
3	New synthetic "tricks― Triphenylphosphine-mediated amide formation from carboxylic acids and azides. Tetrahedron Letters, 1984, 25, 4841-4844.	1.4	105
4	Asymmetric addition of (E)- and (Z)-crotyl-trans-2,5-dimethylborolanes to aldehydes. Journal of Organic Chemistry, 1987, 52, 4831-4832.	3.2	80
5	Highly Enantioenriched Propargylic Alcohols by Oxazaborolidine-Mediated Reduction of Acetylenic Ketones. Journal of Organic Chemistry, 1996, 61, 9021-9025.	3.2	72
6	Catalytic C–H Activation of Phenylethylamines or Benzylamines and Their Annulation with Allenes. Journal of Organic Chemistry, 2014, 79, 9578-9585.	3.2	68
7	Fatty acid synthase is a metabolic marker of cell proliferation rather than malignancy in ovarian cancer and its precursor cells. International Journal of Cancer, 2015, 136, 2078-2090.	5.1	60
8	NH ₂ As a Directing Group: From the Cyclopalladation of Amino Esters to the Preparation of Benzolactams by Palladium(II)-Catalyzed Carbonylation of N-Unprotected Arylethylamines. Organometallics, 2013, 32, 649-659.	2.3	59
9	Enantioselective reduction of ketones catalysed by 1,3,2-oxazaborolidines prepared from phenylglycine. Tetrahedron: Asymmetry, 1994, 5, 165-168.	1.8	54
10	A Straightforward Synthesis of (â^')-Phaseolinic Acid. Journal of Organic Chemistry, 2004, 69, 8172-8175.	3.2	49
11	gem-Difluorination versus 1,2-migration and fragmentation in the reaction of 2- and 3-uloses with DAST. Influence of stereochemistry at the anomeric carbon atom. Journal of Organic Chemistry, 1991, 56, 4556-4559.	3.2	44
12	Reaction of N-nitroso- and N-nitro-N-alkylamides with amines. Journal of Organic Chemistry, 1984, 49, 3322-3327.	3.2	43
13	Enantioselective reduction of acetophenone with 1,3,2-oxazaborolidines derived from ephedrine, pseudoephedrine, and phenylglycine. Tetrahedron: Asymmetry, 1993, 4, 13-16.	1.8	42
14	New synthetic "tricks―One-pot preparation of N-substituted phthalimides from azides and phthalic anhydride. Tetrahedron Letters, 1986, 27, 639-640.	1.4	40
15	C75 is converted to C75-CoA in the hypothalamus, where it inhibits carnitine palmitoyltransferase 1 and decreases food intake and body weight. Biochemical Pharmacology, 2009, 77, 1084-1095.	4.4	40
16	Clinical and therapeutic relevance of the metabolic oncogene fatty acid synthase in HER2+ breast cancer. Histology and Histopathology, 2017, 32, 687-698.	0.7	40
17	A synthetic approach towards octalactin A, based on the stereoselective reduction of \hat{l}_{\pm},\hat{l}^2 -unsaturated ketones. Tetrahedron Letters, 1995, 36, 3425-3428.	1.4	39
18	Stereoselective approach to alk-2-yne-1,4-diols. Application to the synthesis of musclide B. Tetrahedron Letters, 2002, 43, 2691-2694.	1.4	38

#	Article	IF	Citations
19	Oxazaborolidine-catalysed reduction of alk-2-ene-1,4-diones. A convenient access to chiral 1,4-diols. Tetrahedron, 1998, 54, 14947-14962.	1.9	35
20	Total Synthesis of Entecavir. Journal of Organic Chemistry, 2013, 78, 5482-5491.	3.2	34
21	Nitrosation of peptide bonds. Cleavage of nitrosated peptides by pyrrolidine and $\hat{l}\pm$ -amino esters. Tetrahedron, 1984, 40, 3121-3127.	1.9	32
22	Improved methods for the N-nitration of amides. Journal of Organic Chemistry, 1991, 56, 7038-7042.	3.2	30
23	Stereodivergent Approach to β-Hydroxy α-Amino Acids from C2-Symmetrical Alk-2-yne-1,4-diols. Organic Letters, 2002, 4, 4511-4514.	4.6	30
24	Allylic alcohols of unexpected configuration by oxazaborolidine-catalysed reduction of $\hat{l}_{\pm},\hat{l}^{2}$ -unsaturated ketones. An explanation based on MO calculations. Tetrahedron: Asymmetry, 1995, 6, 2683-2686.	1.8	29
25	Computer-aided discovery of biological activity spectra for anti-aging and anti-cancer olive oil oleuropeins. Aging, 2014, 6, 731-741.	3.1	29
26	Enantioselective synthesis of \hat{l}_{\pm} -hydroxy thioesters via oxazaborolidine-mediated reduction of \hat{l}_{\pm} -phenylthio enones. Tetrahedron Letters, 1998, 39, 2183-2186.	1.4	28
27	Differential Pharmacologic Properties of the Two C75 Enantiomers: (+) 75 Is a Strong Anorectic Drug; (Ⱂ) 75 Has Antitumor Activity. Chirality, 2013, 25, 281-287.	2.6	28
28	A Synthesis of Petrofuran Based on the Enantioselective Reduction of 1-Trimethylsilyl-4-alken-1-yn-3-ones. Synlett, 1999, 1999, 429-431.	1.8	27
29	A Concise Synthesis of (-)-Methylenolactocin and (-)-Phaseolinic Acid from (6S,9S)-Tetradec-7-yne-6,9-diol. Synlett, 2001, 2001, 0120-0122.	1.8	27
30	Stereoselective reduction of unsaturated 1,4-diketones. A practical route to chiral 1,4-diols. Tetrahedron Letters, 1997, 38, 1091-1094.	1.4	26
31	Enantioselective synthesis of (3R,4E)-19-methylicos-4-en-1-yn-3-ol, a bioactive metabolite of the marine sponge Cribrochalina vasculum. Tetrahedron: Asymmetry, 1999, 10, 2617-2626.	1.8	26
32	A Versatile Approach to N-Boc-statine and N-Boc-norstatine Based on the Reduction of 1-Trial kylsilyl Acetylenic Ketones. Strong Remote Effect of the C(1) Substituent on the Stereoselectivity. Organic Letters, 1999, 1, 1831-1834.	4.6	26
33	Stereoselective Synthesis of (â^')-Spicigerolide. Journal of Organic Chemistry, 2009, 74, 2008-2012.	3.2	26
34	A Stereoselective Approach to 1,3â€Amino Alcohols Protected as Cyclic Carbamates: Kinetic vs. Thermodynamic Control. European Journal of Organic Chemistry, 2007, 2007, 4293-4297.	2.4	25
35	Preparation of Substituted Tetrahydroisoquinolines by Pd(II)-Catalyzed NH ₂ -Directed Insertion of Michael Acceptors into Câ€"H Bonds Followed by NH ₂ -Conjugated Addition. Organometallics, 2017, 36, 911-919.	2.3	25
36	From azido acids to macrolactams and macrolactones. Journal of the Chemical Society Chemical Communications, 1988, , 270.	2.0	24

#	Article	IF	Citations
37	Chiral synthons for the total synthesis of fluoro amino acids and fluoro analogs of antibiotic sugars. Journal of Organic Chemistry, 1986, 51, 4558-4564.	3.2	23
38	Stereoselective reduction of $\hat{l}\pm\hat{a}\in^2$ -branched $\hat{l}\pm,\hat{l}^2$ -ynones. Application to the synthesis of the Octalactin A ring. Tetrahedron Letters, 1998, 39, 6761-6764.	1.4	23
39	A Synthetic Approach to 3-Hydroxy 4-Substituted Carboxylic Acids based on the Stereoselective Reduction of 1-Trimethylsilyl-1-alkyn-3-ones. Tetrahedron, 2000, 56, 9305-9312.	1.9	22
40	An Efficient, Stereoselective Approach to syn-1,2-Diols Protected as Cyclic Carbonates. Journal of Organic Chemistry, 2004, 69, 7387-7390.	3.2	22
41	Molecules Designed to Contain Two Weakly Coupled Spins with a Photoswitchable Spacer. Chemistry - A European Journal, 2017, 23, 13648-13659.	3.3	22
42	[3,3]-Sigmatropic Rearrangements in the Enantioselective Synthesis of (-)-Methylenolactocin. Synthesis, 2004, 2004, 128-134.	2.3	21
43	Stereodivergent Addition of 4â€Silyloxyâ€1,2â€Allenes to Aldehydes by Hydroboration. Chemistry - A European Journal, 2010, 16, 11535-11538.	3.3	20
44	1-Phenylprop-2-ynyl Acetate:  A Useful Building Block for the Stereoselective Construction of Polyhydroxylated Chains. Organic Letters, 2006, 8, 4501-4504.	4.6	18
45	Preparation of αâ€labeled aldehydes by baseâ€catalyzed exchange reactions. Journal of Labelled Compounds and Radiopharmaceuticals, 2010, 53, 556-558.	1.0	17
46	New synthetic "tricks―using old reagents. A mild method for the conversion of RCONHR′ to RCONHR″. Tetrahedron Letters, 1982, 23, 1127-1128.	1.4	16
47	Multisensitive drug-loaded polyurethane/polyurea nanocapsules with pH-synchronized shell cationization and redox-triggered release. Polymer Chemistry, 2016, 7, 6457-6466.	3.9	15
48	Highly Stereoselective Approach to Alk-2-yne-1,4-diols by Oxazaborolidine-Mediated Reduction of Alk-2-yne-1,4-dionesâ€. Journal of Organic Chemistry, 2004, 69, 5307-5313.	3.2	14
49	Stereocontrolled Synthesis of Highly Functionalized Quaternary Carbon Centers: A Route to αâ€ S ubstituted Serines. Angewandte Chemie - International Edition, 2009, 48, 4202-4205.	13.8	14
50	(â^')-UB006: A new fatty acid synthase inhibitor and cytotoxic agent without anorexic side effects. European Journal of Medicinal Chemistry, 2017, 131, 207-221.	5.5	12
51	An overview of nanomedicines for neuron targeting. Nanomedicine, 2020, 15, 1617-1636.	3.3	12
52	Syntheses of the C-1 alkyl side chains of Zaragozic acids A and C. Tetrahedron Letters, 1998, 39, 6765-6768.	1.4	11
53	Chiral Induction in Intramolecular Rhodiumâ€Catalyzed [2+2+2] Cycloadditions of Optically Active Allene–ene/yne–allene Substrates. Advanced Synthesis and Catalysis, 2017, 359, 506-512.	4.3	11
54	A Versatile Stereoselective Approach to Paraconic Acids. Heterocycles, 2006, 67, 705.	0.7	11

#	Article	IF	Citations
55	New synthetic "tricks― From aliphatic amines and amides to azides and/or how to convert RNHCOR′ into RNHCOR″ avoiding drastic hydrolyses. Tetrahedron Letters, 1987, 28, 341-342.	1.4	10
56	Poly-ion complex micelles effectively deliver CoA-conjugated CPT1A inhibitors to modulate lipid metabolism in brain cells. Biomaterials Science, 2021, 9, 7076-7091.	5.4	10
57	Tools and techniques for automatic data layout: A case study. Parallel Computing, 1998, 24, 557-578.	2.1	9
58	Total Synthesis of (â^')-Isoavenaciolide. Journal of Organic Chemistry, 2013, 78, 1519-1524.	3.2	9
59	Designed asymmetric coordination helicates with bis- \hat{l}^2 -diketonate ligands. Dalton Transactions, 2019, 48, 16844-16847.	3.3	8
60	DDT: A Research Tool for Automatic Data Distribution in High Performance Fortran. Scientific Programming, 1997, 6, 73-94.	0.7	7
61	Degradation of Fatty Acid Phase-Change Materials (PCM): New Approach for Its Characterization. Molecules, 2021, 26, 982.	3.8	7
62	Stereoselective synthesis of musclides A1, A2 and B. Tetrahedron: Asymmetry, 2003, 14, 1127-1131.	1.8	6
63	Stereoselective Acetate Aldol Reactions from Metal Enolates. Synthesis, 2011, 2011, 2175-2191.	2.3	6
64	Regio- and stereoselective microwave-assisted synthesis of 5-alkyl-4-alkenyl-4-phenyl-1,3-oxazolidin-2-ones. Tetrahedron Letters, 2010, 51, 935-938.	1.4	4
65	A new synthetic approach to the lactol moiety of halichoblelide. Tetrahedron, 2011, 67, 5184-5188.	1.9	4
66	Convenient synthesis of C75, an inhibitor of FAS and CPT1. RSC Advances, 2013, 3, 6564.	3.6	3
67	Access to indolines from primary phenylethylamines by an unexpected palladium-catalyzed C–H functionalization process. RSC Advances, 2019, 9, 27176-27182.	3.6	3
68	Pyridine- and Quinoline-Derived Imines as N,N-Bidentate Directing Groups in Palladium versus Platinum Câ€"H Bond Activation Reactions. Organometallics, 2021, 40, 203-217.	2.3	3
69	New Stereoselective Approach to 1,2,3-Triols: Application to a Straight forward Access to Polyoxamic Acid Array. Synlett, 2006, 2006, 1895-1898.	1.8	2
70	A Useful Allene for the Stereoselective Synthesis of Protected Quaternary 2-Amino-2-vinyl-1,3-diols. Journal of Organic Chemistry, 2017, 82, 1851-1855.	3.2	2
71	Highly Stereoselective Approach to Alk-2-yne-1,4-diols by Oxazaborolidine-Mediated Reduction of Alk-2-yne-1,4-diones ChemInform, 2004, 35, no.	0.0	0
72	An Efficient, Stereoselective Approach to syn-1,2-Diols Protected as Cyclic Carbonates ChemInform, 2005, 36, no.	0.0	0

#	Article	IF	CITATIONS
73	Stereoselective preparation of quaternary 2-vinyl sphingosines and ceramides and their effect on basal sphingolipid metabolism. Chemistry and Physics of Lipids, 2017, 205, 34-41.	3.2	0
74	An Enantioselective Approach to 4-Substituted Proline Scaffolds: Synthesis of (S)-5-(tert-Butoxy) Tj ETQq0 0 0 rg	;BT ₃ ,8verlo	ck ₀ 10 Tf 50 7
7 5	A New Nanomedicine Platform to Deliver a Carnitine Palmitoyl-Transferase 1 (CPT1) Inhibitor into Glioma Cells and Neurons. Materials Proceedings, 2020, 4, .	0.2	0