
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2097568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A chromosomeâ€scale assembly of the bilberry genome identifies a complex locus controlling berry anthocyanin composition. Molecular Ecology Resources, 2022, 22, 345-360.	4.8	28
2	Hierarchical regulation of <i>MYBPA1</i> by anthocyanin- and proanthocyanidin-related MYB proteins is conserved in <i>Vaccinium</i> species. Journal of Experimental Botany, 2022, 73, 1344-1356.	4.8	20
3	Resolving the developmental distribution patterns of polyphenols and related primary metabolites in bilberry (Vaccinium myrtillus) fruit. Food Chemistry, 2022, 374, 131703.	8.2	19
4	Insights into sugar metabolism during bilberry (<scp><i>Vaccinium myrtillus</i></scp> L.) fruit development. Physiologia Plantarum, 2022, 174, e13657.	5.2	15
5	A dPCR Method for Quantitative Authentication of Wild Lingonberry (Vaccinium vitis-idaea) versus Cultivated American Cranberry (V. macrocarpon). Foods, 2022, 11, 1476.	4.3	6
6	Functional phenomics for improved climate resilience in Nordic agriculture. Journal of Experimental Botany, 2022, 73, 5111-5127.	4.8	10
7	Potential use of biofungicides and conventional fungicide for the management of Botrytis blossom blight in lowbush blueberries. Canadian Journal of Plant Pathology, 2021, 43, 704-713.	1.4	3
8	Influence of Arctic light conditions on crop production and quality. Physiologia Plantarum, 2021, 172, 1931-1940.	5.2	12
9	Red and blue light treatments of ripening bilberry fruits reveal differences in signalling through abscisic acidâ€regulated anthocyanin biosynthesis. Plant, Cell and Environment, 2021, 44, 3227-3245.	5.7	51
10	Authentication of berries and berryâ€based food products. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5197-5225.	11.7	23
11	Analysis of composition, morphology, and biosynthesis of cuticular wax in wild type bilberry (Vaccinium myrtillus L.) and its glossy mutant. Food Chemistry, 2021, 354, 129517.	8.2	24
12	MYBA and MYBPA transcription factors coâ€regulate anthocyanin biosynthesis in blue oloured berries. New Phytologist, 2021, 232, 1350-1367.	7.3	56
13	Elucidation of the molecular responses during the primary infection of wild blueberry phenotypes with Monilinia vaccinii-corymbosi under field conditions. BMC Plant Biology, 2021, 21, 493.	3.6	3
14	Selection and validation of reliable reference genes for gene expression studies from Monilinia vaccinii-corymbosi infected wild blueberry phenotypes. Scientific Reports, 2020, 10, 11688.	3.3	13
15	Changes in the Proanthocyanidin Composition and Related Gene Expression in Bilberry (<i>Vaccinium) Tj ETQq1 I</i>	l <u>9.7</u> 8431	4 _[gBT /Over
16	Spatiotemporal Modulation of Flavonoid Metabolism in Blueberries. Frontiers in Plant Science, 2020, 11, 545.	3.6	42
17	Compositional and morphological analyses of wax in northern wild berry species. Food Chemistry, 2019, 295, 441-448.	8.2	43
18	Developmental and Environmental Regulation of Cuticular Wax Biosynthesis in Fleshy Fruits. Frontiers in Plant Science, 2019, 10, 431.	3.6	102

#	Article	IF	CITATIONS
19	Contrasting survival and physiological responses of sub-Arctic plant types to extreme winter warming and nitrogen. Planta, 2018, 247, 635-648.	3.2	17
20	Impact of Multiple Ecological Stressors on a Sub-Arctic Ecosystem: No Interaction Between Extreme Winter Warming Events, Nitrogen Addition and Grazing. Frontiers in Plant Science, 2018, 9, 1787.	3.6	6
21	Abscisic Acid Regulates Anthocyanin Biosynthesis and Gene Expression Associated With Cell Wall Modification in Ripening Bilberry (Vaccinium myrtillus L.) Fruits. Frontiers in Plant Science, 2018, 9, 1259.	3.6	73
22	Recognition of candidate transcription factors related to bilberry fruit ripening by de novo transcriptome and qRT-PCR analyses. Scientific Reports, 2018, 8, 9943.	3.3	16
23	Reliable and practical methods for cryopreservation of embryogenic cultures and cold storage of somatic embryos of Norway spruce. Cryobiology, 2017, 76, 8-17.	0.7	28
24	Phenolic compounds and antioxidant capacity in different-colored and non-pigmented berries of bilberry (Vaccinium myrtillus L.). Food Bioscience, 2017, 20, 67-78.	4.4	30
25	Altered regulation of TERMINAL FLOWER 1 causes the unique vernalisation response in an arctic woodland strawberry accession. New Phytologist, 2017, 216, 841-853.	7.3	24
26	Native Chilean Fruits and the Effects of their Functional Compounds on Human Health. , 2017, , .		3
27	Methyl Jasmonate: An Alternative for Improving the Quality and Health Properties of Fresh Fruits. Molecules, 2016, 21, 567.	3.8	99
28	Molecular Cloning and Expression Analysis of hyp-1 Type PR-10 Family Genes in Hypericum perforatum. Frontiers in Plant Science, 2016, 7, 526.	3.6	17
29	On the Developmental and Environmental Regulation of Secondary Metabolism in Vaccinium spp. Berries. Frontiers in Plant Science, 2016, 7, 655.	3.6	80
30	Bilberry (Vaccinium myrtillus L.) Ecotypes. , 2016, , 83-99.		12
31	Carotenoid metabolism during bilberry (Vaccinium myrtillus L.) fruit development under different light conditions is regulated by biosynthesis and degradation. BMC Plant Biology, 2016, 16, 95.	3.6	44
32	Genetic diversity and population structure of an important wild berry crop. AoB PLANTS, 2015, 7, plv117.	2.3	18
33	Modification of Sunlight Radiation through Colored Photo-Selective Nets Affects Anthocyanin Profile in Vaccinium spp. Berries. PLoS ONE, 2015, 10, e0135935.	2.5	45
34	Metabolic and molecular analyses of white mutant Vaccinium berries show down-regulation of MYBPA1-type R2R3 MYB regulatory factor. Planta, 2015, 242, 631-643.	3.2	37
35	Anthocyanin Profile in Berries of Wild and Cultivated <i>Vaccinium</i> spp. along Altitudinal Gradients in the Alps. Journal of Agricultural and Food Chemistry, 2015, 63, 8641-8650.	5.2	67
36	Light-controlled flavonoid biosynthesis in fruits. Frontiers in Plant Science, 2014, 5, 534.	3.6	353

#	Article	IF	CITATIONS
37	Monochromatic light increases anthocyanin content during fruit development in bilberry. BMC Plant Biology, 2014, 14, 377.	3.6	68
38	New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science, 2013, 18, 477-483.	8.8	893
39	Changes in the abscisic acid levels and related gene expression during fruit development and ripening in bilberry (Vaccinium myrtillus L.). Phytochemistry, 2013, 95, 127-134.	2.9	80
40	Anthocyanin fingerprinting for authenticity studies of bilberry (VacciniumÂmyrtillus L.). Food Control, 2013, 30, 662-667.	5.5	51
41	Ascorbic acid metabolism during bilberry (Vaccinium myrtillus L.) fruit development. Journal of Plant Physiology, 2012, 169, 1059-1065.	3.5	41
42	Effects of Temperature and Photoperiod on Yield and Chemical Composition of Northern and Southern Clones of Bilberry (<i>Vaccinium myrtillus</i> L.). Journal of Agricultural and Food Chemistry, 2012, 60, 10406-10414.	5.2	111
43	Biofilm formation and virulence of uropathogenic Escherichia coli in urine after consumption of cranberry-lingonberry juice. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31, 655-662.	2.9	12
44	Phenolic compounds in berries and flowers of a natural hybrid between bilberry and lingonberry (Vaccinium×intermedium Ruthe). Phytochemistry, 2011, 72, 810-815.	2.9	49
45	Phenolic Composition and Antioxidant Capacity of Bilberry (Vaccinium myrtillus) Leaves in Northern Europe Following Foliar Development and Along Environmental Gradients. Journal of Chemical Ecology, 2010, 36, 1017-1028.	1.8	100
46	Novel approaches based on DNA barcoding and high-resolution melting of amplicons for authenticity analyses of berry species. Food Chemistry, 2010, 123, 494-500.	8.2	92
47	Effect of latitude on flavonoid biosynthesis in plants. Plant, Cell and Environment, 2010, 33, 1239-1247.	5.7	306
48	Effects of Latitude-Related Factors and Geographical Origin on Anthocyanidin Concentrations in Fruits of <i>Vaccinium myrtillus</i> L. (Bilberries). Journal of Agricultural and Food Chemistry, 2010, 58, 11939-11945.	5.2	99
49	Anthocyanin and Flavonol Variation in Bog Bilberries (<i>Vaccinium uliginosum</i> L.) in Finland. Journal of Agricultural and Food Chemistry, 2010, 58, 427-433.	5.2	87
50	A SQUAMOSA MADS Box Gene Involved in the Regulation of Anthocyanin Accumulation in Bilberry Fruits Â. Plant Physiology, 2010, 153, 1619-1629.	4.8	232
51	Flavonoid biosynthesis and degradation play a role in early defence responses of bilberry (Vaccinium) Tj ETQq1	1 0.784314 1.7	4 rg <mark>8</mark> T /Overl
52	Isolation and genotype-dependent, organ-specific expression analysis of a Rhodiola rosea cDNA encoding tyrosine decarboxylase. Journal of Plant Physiology, 2009, 166, 1581-1586.	3.5	23
53	Bilberry In Vitro Protocols and Analyses of Phenolic Compounds. Methods in Molecular Biology, 2009, 547, 71-80.	0.9	2
54	Identification of Phenolic Compounds from Lingonberry (<i>Vaccinium vitis-idaea</i> L.), Bilberry (<i>Vaccinium myrtillus</i> L.) and Hybrid Bilberry (<i>Vaccinium x intermedium</i> Ruthe L.) Leaves. Journal of Agricultural and Food Chemistry, 2009, 57, 9437-9447.	5.2	125

#	Article	IF	CITATIONS
55	Effect of wounding on chalcone synthase and pathogenesis related PR-10 gene expression and content of phenolic compounds in bilberry leaves. Biologia Plantarum, 2008, 52, 391-395.	1.9	15
56	Organ-specific distribution of phenolic compounds in bilberry (Vaccinium myrtillus) and â€~northblue' blueberry (Vaccinium corymbosum x V. angustifolium). Food Chemistry, 2008, 110, 156-160.	8.2	149
57	Artificial infection of Vaccinium vitis-idaea L. and defence responses to Exobasidium species. Physiological and Molecular Plant Pathology, 2008, 72, 146-150.	2.5	7
58	Method based on electrophoresis and gel extraction for obtaining genomic DNA-free cDNA without DNase treatment. BioTechniques, 2004, 37, 744-748.	1.8	24
59	Does Extraction of DNA and RNA by Magnetic Fishing Work for Diverse Plant Species?. Molecular Biotechnology, 2004, 27, 209-216.	2.4	9
60	Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta, 2004, 218, 721-728.	3.2	238
61	Expression of Genes Involved in Anthocyanin Biosynthesis in Relation to Anthocyanin, Proanthocyanidin, and Flavonol Levels during Bilberry Fruit Development. Plant Physiology, 2002, 130, 729-739.	4.8	404
62	cDNA blotting offers an alternative method for gene expression studies. Plant Molecular Biology Reporter, 2001, 19, 125-128.	1.8	15
63	Title is missing!. Plant Cell, Tissue and Organ Culture, 2001, 66, 73-77.	2.3	46
64	Isolation of High Quality RNA from Bilberry (Vaccinium myrtillus L.) Fruit. Molecular Biotechnology, 2001, 19, 201-204.	2.4	354
65	The Coordinated Action of MYB Activators and Repressors Controls Proanthocyanidin and Anthocyanin Biosynthesis in Vaccinium. Frontiers in Plant Science, 0, 13, .	3.6	8