Peter J Park

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2097508/peter-j-park-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

151	18,708	59	136
papers	citations	h-index	g-index
165	24,401	20.3	6.69
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
151	Pairs and Pairix: a file format and a tool for efficient storage and retrieval for Hi-C read pairs <i>Bioinformatics</i> , 2022 ,	7.2	2
150	Single-cell gene fusion detection by scFusion <i>Nature Communications</i> , 2022 , 13, 1084	17.4	1
149	Somatic mosaicism reveals clonal distributions of neocortical development <i>Nature</i> , 2022 ,	50.4	1
148	The 4D Nucleome Data Portal as a resource for searching and visualizing curated nucleomics data <i>Nature Communications</i> , 2022 , 13, 2365	17.4	3
147	Whole-genome analysis reveals the contribution of non-coding de novo transposon insertions to autism spectrum disorder. <i>Mobile DNA</i> , 2021 , 12, 28	4.4	2
146	Micro-Meta App: an interactive tool for collecting microscopy metadata based on community specifications. <i>Nature Methods</i> , 2021 , 18, 1489-1495	21.6	4
145	Landmarks of human embryonic development inscribed in somatic mutations. <i>Science</i> , 2021 , 371, 1249-	13253	13
144	Comprehensive identification of somatic nucleotide variants in human brain tissue. <i>Genome Biology</i> , 2021 , 22, 92	18.3	3
143	The origins and genetic interactions of KRAS mutations are allele- and tissue-specific. <i>Nature Communications</i> , 2021 , 12, 1808	17.4	14
142	Negative elongation factor regulates muscle progenitor expansion for efficient myofiber repair and stem cell pool repopulation. <i>Developmental Cell</i> , 2021 , 56, 1014-1029.e7	10.2	5
141	Resources and challenges for integrative analysis of nuclear architecture data. <i>Current Opinion in Genetics and Development</i> , 2021 , 67, 103-110	4.9	1
140	Essential histone chaperones collaborate to regulate transcription and chromatin integrity. <i>Genes and Development</i> , 2021 , 35, 698-712	12.6	7
139	Comprehensive identification of transposable element insertions using multiple sequencing technologies. <i>Nature Communications</i> , 2021 , 12, 3836	17.4	7
138	Somatic mutation accumulation seen through a single-molecule lens. <i>Cell Research</i> , 2021 , 31, 949-950	24.7	
137	HiTea: a computational pipeline to identify non-reference transposable element insertions in Hi-C data. <i>Bioinformatics</i> , 2021 , 37, 1045-1051	7.2	2
136	Heterogeneity and Clonal Evolution of Acquired PARP Inhibitor Resistance in and -Deficient Cells. <i>Cancer Research</i> , 2021 , 81, 2774-2787	10.1	3
135	Large mosaic copy number variations confer autism risk. <i>Nature Neuroscience</i> , 2021 , 24, 197-203	25.5	10

(2020-2021)

Deletions in CWH43 cause idiopathic normal pressure hydrocephalus. <i>EMBO Molecular Medicine</i> , 2021 , 13, e13249	12	8
The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. <i>Nature Neuroscience</i> , 2021 , 24, 176-185	25.5	19
Computational analysis of cancer genome sequencing data. Nature Reviews Genetics, 2021,	30.1	2
Parallel RNA and DNA analysis after deep sequencing (PRDD-seq) reveals cell type-specific lineage patterns in human brain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 13886-13895	11.5	13
Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. <i>Nature Communications</i> , 2020 , 11, 1459	17.4	82
HiNT: a computational method for detecting copy number variations and translocations from Hi-C data. <i>Genome Biology</i> , 2020 , 21, 73	18.3	27
Dysregulation of cancer genes by recurrent intergenic fusions. <i>Genome Biology</i> , 2020 , 21, 166	18.3	8
A user guide for the online exploration and visualization of PCAWG data. <i>Nature Communications</i> , 2020 , 11, 3400	17.4	7
GiniQC: a measure for quantifying noise in single-cell Hi-C data. <i>Bioinformatics</i> , 2020 , 36, 2902-2904	7.2	2
Genomic footprints of activated telomere maintenance mechanisms in cancer. <i>Nature Communications</i> , 2020 , 11, 733	17.4	40
Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. <i>Nature Genetics</i> , 2020 , 52, 306-319	36.3	122
Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. <i>Nature Genetics</i> , 2020 , 52, 331-341	36.3	168
Accurate detection of mosaic variants in sequencing data without matched controls. <i>Nature Biotechnology</i> , 2020 , 38, 314-319	44.5	20
Genomic Determinants of De Novo Resistance to Immune Checkpoint Blockade in Mismatch Repair-Deficient Endometrial Cancer. <i>JCO Precision Oncology</i> , 2020 , 4, 492-497	3.6	2
Identification and Genotyping of Transposable Element Insertions From Genome Sequencing Data. <i>Current Protocols in Human Genetics</i> , 2020 , 107, e102	3.2	4
Epigenetic transcriptional reprogramming by WT1 mediates a repair response during podocyte injury. <i>Science Advances</i> , 2020 , 6, eabb5460	14.3	4
The conserved elongation factor Spn1 is required for normal transcription, histone modifications, and splicing in Saccharomyces cerevisiae. <i>Nucleic Acids Research</i> , 2020 , 48, 10241-10258	20.1	6
Systematic Assessment of Tumor Purity and Its Clinical Implications. <i>JCO Precision Oncology</i> , 2020 , 4,	3.6	7
	The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. <i>Nature Neuroscience</i> , 2021, 24, 176-185 Computational analysis of cancer genome sequencing data. <i>Nature Reviews Genetics</i> , 2021, Parallel RNA and DNA analysis after deep sequencing (PRDD-seq) reveals cell type-specific lineage patterns in human brain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020, 117, 13836-13895 Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. <i>Nature Communications</i> , 2020, 11, 1459 HiNT: a computational method for detecting copy number variations and translocations from Hi-C data. <i>Genome Biology</i> , 2020, 21, 73 Dysregulation of cancer genes by recurrent intergenic fusions. <i>Genome Biology</i> , 2020, 21, 166 A user guide for the online exploration and visualization of PCAWG data. <i>Nature Communications</i> , 2020, 11, 3400 GiniQC: a measure for quantifying noise in single-cell Hi-C data. <i>Bioinformatics</i> , 2020, 36, 2902-2904 Genomic footprints of activated telomere maintenance mechanisms in cancer. <i>Nature Communications</i> , 2020, 11, 733 Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. <i>Nature Genetics</i> , 2020, 52, 336-319 Comprehensive analysis of chromothripsis in 2, 658 human cancers using whole-genome sequencing. <i>Nature Genetics</i> , 2020, 52, 331-341 Accurate detection of mosaic variants in sequencing data without matched controls. <i>Nature Biotechnology</i> , 2020, 38, 314-319 Genomic Determinants of De Novo Resistance to Immune Checkpoint Blockade in Mismatch Repair-Deficient Endometrial Cancer. <i>JCO Precision Oncology</i> , 2020, 4, 492-497 Identification and Genotyping of Transposable Element Insertions From Genome Sequencing Data. <i>Current Protocols in Human Genetics</i> , 2020, 107, e102 Epigenetic transcriptional reprogramming by WT1 mediates a repair response during podocyte injury. <i>Science Advan</i>	The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. <i>Nature Neuroscience</i> , 2021, 24, 176-185 Computational analysis of cancer genome sequencing data. <i>Nature Reviews Genetics</i> , 2021, 30.1 Parallel RNA and DNA analysis after deep sequencing (PRDD-seq) reveals cell type-specific lineage patterns in human brain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020, 117, 13886-13895 Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. <i>Nature Communications</i> , 2020, 11, 1459 174 HiNT: a computational method for detecting copy number variations and translocations from Hi-C data. <i>Genome Biology</i> , 2020, 21, 73 Dysregulation of cancer genes by recurrent intergenic fusions. <i>Genome Biology</i> , 2020, 21, 166 183 A user guide for the online exploration and visualization of PCAWG data. <i>Nature Communications</i> , 2020, 11, 3400 GiniQC: a measure for quantifying noise in single-cell Hi-C data. <i>Bioinformatics</i> , 2020, 36, 2902-2904 Genomic Footprints of activated telomere maintenance mechanisms in cancer. <i>Nature Communications</i> , 2020, 11, 733 Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. <i>Nature Genetics</i> , 2020, 52, 331-341 Accurate detection of mosaic variants in sequencing data without matched controls. <i>Nature Biotechnology</i> , 2020, 38, 314-319 Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. <i>Nature Genetics</i> , 2020, 52, 331-341 Accurate detection of mosaic variants in sequencing data without matched controls. <i>Nature Biotechnology</i> , 2020, 38, 314-319 Cenomic Determinants of De Novo Resistance to Immune Checkpoint Blockade in Mismatch Repair-Deficient Endometrial Cancer. <i>JCO Precision Oncology</i> , 2020, 4, 492-497 Lidentification and Genotyping of Transposable Element Insertions From Genome Sequencing Data. <i>Current Protocols in Human </i>

116	Mechanisms and therapeutic implications of hypermutation in gliomas. <i>Nature</i> , 2020 , 580, 517-523	50.4	172
115	Genomics of MPNST (GeM) Consortium: Rationale and Study Design for Multi-Omic Characterization of NF1-Associated and Sporadic MPNSTs. <i>Genes</i> , 2020 , 11,	4.2	6
114	Small-Molecule and CRISPR Screening Converge to Reveal Receptor Tyrosine Kinase Dependencies in Pediatric Rhabdoid Tumors. <i>Cell Reports</i> , 2019 , 28, 2331-2344.e8	10.6	20
113	Identification of somatic mutations in single cell DNA-seq using a spatial model of allelic imbalance. Nature Communications, 2019, 10, 3908	17.4	40
112	MicroRNA-29a activates a multi-component growth and invasion program in glioblastoma. <i>Journal of Experimental and Clinical Cancer Research</i> , 2019 , 38, 36	12.8	12
111	A dynamic and integrated epigenetic program at distal regions orchestrates transcriptional responses to VEGFA. <i>Genome Research</i> , 2019 , 29, 193-207	9.7	5
110	Tracing Oncogene Rearrangements in the Mutational History of Lung Adenocarcinoma. <i>Cell</i> , 2019 , 177, 1842-1857.e21	56.2	84
109	Tibanna: software for scalable execution of portable pipelines on the cloud. <i>Bioinformatics</i> , 2019 , 35, 4424-4426	7.2	6
108	BRD9 defines a SWI/SNF sub-complex and constitutes a specific vulnerability in malignant rhabdoid tumors. <i>Nature Communications</i> , 2019 , 10, 1881	17.4	51
107	Linked-read analysis identifies mutations in single-cell DNA-sequencing data. <i>Nature Genetics</i> , 2019 , 51, 749-754	36.3	42
106	Detecting the mutational signature of homologous recombination deficiency in clinical samples. <i>Nature Genetics</i> , 2019 , 51, 912-919	36.3	96
105	MDM2 and MDM4 Are Therapeutic Vulnerabilities in Malignant Rhabdoid Tumors. <i>Cancer Research</i> , 2019 , 79, 2404-2414	10.1	24
104	An enhanced genetic model of colorectal cancer progression history. <i>Genome Biology</i> , 2019 , 20, 168	18.3	21
103	Global impact of somatic structural variation on the DNA methylome of human cancers. <i>Genome Biology</i> , 2019 , 20, 209	18.3	9
102	Patient-Customized Oligonucleotide Therapy for a Rare Genetic Disease. <i>New England Journal of Medicine</i> , 2019 , 381, 1644-1652	59.2	232
101	Comprehensive Characterization of Cancer Driver Genes and Mutations. <i>Cell</i> , 2018 , 173, 371-385.e18	56.2	854
100	PaSD-qc: quality control for single cell whole-genome sequencing data using power spectral density estimation. <i>Nucleic Acids Research</i> , 2018 , 46, e20	20.1	11
99	Detecting Somatic Mutations in Normal Cells. <i>Trends in Genetics</i> , 2018 , 34, 545-557	8.5	53

(2017-2018)

98	A Pan-Cancer Compendium of Genes Deregulated by Somatic Genomic Rearrangement across More Than 1,400 Cases. <i>Cell Reports</i> , 2018 , 24, 515-527	10.6	49
97	The BabySeq project: implementing genomic sequencing in newborns. <i>BMC Pediatrics</i> , 2018 , 18, 225	2.6	55
96	HiGlass: web-based visual exploration and analysis of genome interaction maps. <i>Genome Biology</i> , 2018 , 19, 125	18.3	242
95	Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data. <i>Genome Research</i> , 2018 , 28, 1217-1227	9.7	90
94	Aging and neurodegeneration are associated with increased mutations in single human neurons. <i>Science</i> , 2018 , 359, 555-559	33.3	315
93	EED, a member of the polycomb group, is required for nephron differentiation and the maintenance of nephron progenitor cells. <i>Development (Cambridge)</i> , 2018 , 145,	6.6	10
92	The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers. <i>Nature Communications</i> , 2017 , 8, 14648	17.4	148
91	Engineering and Functional Characterization of Fusion Genes Identifies Novel Oncogenic Drivers of Cancer. <i>Cancer Research</i> , 2017 , 77, 3502-3512	10.1	22
90	Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network. <i>Science</i> , 2017 , 356,	33.3	152
89	A Pan-Cancer Proteogenomic Atlas of PI3K/AKT/mTOR Pathway Alterations. <i>Cancer Cell</i> , 2017 , 31, 820-	-8 3 2. 3	3 286
88	A molecular portrait of microsatellite instability across multiple cancers. <i>Nature Communications</i> , 2017 , 8, 15180	17.4	288
87	DUSP9 Modulates DNA Hypomethylation in Female Mouse Pluripotent Stem Cells. <i>Cell Stem Cell</i> , 2017 , 20, 706-719.e7	18	43
86	Spt5 Plays Vital Roles in the Control of Sense and Antisense Transcription Elongation. <i>Molecular Cell</i> , 2017 , 66, 77-88.e5	17.6	63
85	ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. <i>Nature Genetics</i> , 2017 , 49, 296-302	36.3	178
84	SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. <i>Nature Genetics</i> , 2017 , 49, 289-295	36.3	172
83	Bivalent complexes of PRC1 with orthologs of BRD4 and MOZ/MORF target developmental genes in. <i>Genes and Development</i> , 2017 , 31, 1988-2002	12.6	14
82	NGSCheckMate: software for validating sample identity in next-generation sequencing studies within and across data types. <i>Nucleic Acids Research</i> , 2017 , 45, e103	20.1	43
81	Clonal History and Genetic Predictors of Transformation Into Small-Cell Carcinomas From Lung Adenocarcinomas. <i>Journal of Clinical Oncology</i> , 2017 , 35, 3065-3074	2.2	229

80	The 4D nucleome project. <i>Nature</i> , 2017 , 549, 219-226	50.4	332
79	VEGF amplifies transcription through ETS1 acetylation to enable angiogenesis. <i>Nature Communications</i> , 2017 , 8, 383	17.4	48
78	Clinical Application of Targeted Deep Sequencing in Solid-Cancer Patients and Utility for Biomarker-Selected Clinical Trials. <i>Oncologist</i> , 2017 , 22, 1169-1177	5.7	10
77	Prevalence and detection of low-allele-fraction variants in clinical cancer samples. <i>Nature Communications</i> , 2017 , 8, 1377	17.4	92
76	, the homologue of SET3, Is Required for Viability and the Proper Balance of Active and Repressive Chromatin Marks. <i>G3: Genes, Genomes, Genetics</i> , 2017 , 7, 625-635	3.2	8
75	Evaluation of somatic copy number estimation tools for whole-exome sequencing data. <i>Briefings in Bioinformatics</i> , 2016 , 17, 185-92	13.4	35
74	Copy number analysis of whole-genome data using BIC-seq2 and its application to detection of cancer susceptibility variants. <i>Nucleic Acids Research</i> , 2016 , 44, 6274-86	20.1	82
73	Next-generation sequencing-based detection of germline L1-mediated transductions. <i>BMC Genomics</i> , 2016 , 17, 342	4.5	7
72	Multilevel Genomics-Based Taxonomy of Renal Cell Carcinoma. <i>Cell Reports</i> , 2016 , 14, 2476-89	10.6	228
71	Intravenous leiomyomatosis: an unusual intermediate between benign and malignant uterine smooth muscle tumors. <i>Modern Pathology</i> , 2016 , 29, 500-10	9.8	42
70	Mechanisms and Consequences of Cancer Genome Instability: Lessons from Genome Sequencing Studies. <i>Annual Review of Pathology: Mechanisms of Disease</i> , 2016 , 11, 283-312	34	72
69	The Impact of Environmental and Endogenous Damage on Somatic Mutation Load in Human Skin Fibroblasts. <i>PLoS Genetics</i> , 2016 , 12, e1006385	6	55
68	Resolving rates of mutation in the brain using single-neuron genomics. <i>ELife</i> , 2016 , 5,	8.9	109
67	Comprehensive analysis of promoter-proximal RNA polymerase II pausing across mammalian cell types. <i>Genome Biology</i> , 2016 , 17, 120	18.3	35
66	MNase titration reveals differences between nucleosome occupancy and chromatin accessibility. <i>Nature Communications</i> , 2016 , 7, 11485	17.4	132
65	Analyzing Somatic Genome Rearrangements in Human Cancers by Using Whole-Exome Sequencing. <i>American Journal of Human Genetics</i> , 2016 , 98, 843-856	11	27
64	Sex comb on midleg (Scm) is a functional link between PcG-repressive complexes in Drosophila. <i>Genes and Development</i> , 2015 , 29, 1136-50	12.6	47
63	Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. <i>New England Journal of Medicine</i> , 2015 , 372, 2481-98	59.2	1828

(2014-2015)

62	Identification of rare germline copy number variations over-represented in five human cancer types. <i>Molecular Cancer</i> , 2015 , 14, 25	42.1	26
61	Somatic mutation in single human neurons tracks developmental and transcriptional history. <i>Science</i> , 2015 , 350, 94-98	33.3	364
60	Intron retention is a widespread mechanism of tumor-suppressor inactivation. <i>Nature Genetics</i> , 2015 , 47, 1242-8	36.3	217
59	Failure to replicate the STAP cell phenomenon. <i>Nature</i> , 2015 , 525, E6-9	50.4	34
58	Hallmarks of pluripotency. <i>Nature</i> , 2015 , 525, 469-78	50.4	253
57	Pericentromeric satellite repeat expansions through RNA-derived DNA intermediates in cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 15148-53	11.5	91
56	A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. <i>Nature Biotechnology</i> , 2015 , 33, 1173-81	44.5	192
55	Spatiotemporal Evolution of the Primary Glioblastoma Genome. Cancer Cell, 2015, 28, 318-28	24.3	180
54	EMSAR: estimation of transcript abundance from RNA-seq data by mappability-based segmentation and reclustering. <i>BMC Bioinformatics</i> , 2015 , 16, 278	3.6	11
53	The histone chaperone CAF-1 safeguards somatic cell identity. <i>Nature</i> , 2015 , 528, 218-24	50.4	183
52	Correspondence of Drosophila polycomb group proteins with broad H3K27me3 silent domains. <i>Fly</i> , 2015 , 9, 178-82	1.3	1
51	Genome-Wide Analysis of WilmsUTumor 1-Controlled Gene Expression in Podocytes Reveals Key Regulatory Mechanisms. <i>Journal of the American Society of Nephrology: JASN</i> , 2015 , 26, 2097-104	12.7	72
50	Htt CAG repeat expansion confers pleiotropic gains of mutant huntingtin function in chromatin regulation. <i>Human Molecular Genetics</i> , 2015 , 24, 2442-57	5.6	38
49	Cell lineage analysis in human brain using endogenous retroelements. <i>Neuron</i> , 2015 , 85, 49-59	13.9	183
48	Transcriptional control of a whole chromosome: emerging models for dosage compensation. <i>Nature Structural and Molecular Biology</i> , 2014 , 21, 118-25	17.6	42
47	A genome-wide view of microsatellite instability: old stories of cancer mutations revisited with new sequencing technologies. <i>Cancer Research</i> , 2014 , 74, 6377-82	10.1	15
46	Characterization of HPV and host genome interactions in primary head and neck cancers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 15544-9	11.5	229
45	Comparative analysis of the transcriptome across distant species. <i>Nature</i> , 2014 , 512, 445-8	50.4	207

44	Guided visual exploration of genomic stratifications in cancer. <i>Nature Methods</i> , 2014 , 11, 884-885	21.6	17
43	Comparative analysis of metazoan chromatin organization. <i>Nature</i> , 2014 , 512, 449-52	50.4	265
42	The somatic genomic landscape of chromophobe renal cell carcinoma. <i>Cancer Cell</i> , 2014 , 26, 319-330	24.3	521
41	Nucleosomal occupancy changes locally over key regulatory regions during cell differentiation and reprogramming. <i>Nature Communications</i> , 2014 , 5, 4719	17.4	67
40	p53 prevents neurodegeneration by regulating synaptic genes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 18055-60	11.5	47
39	Impact of sequencing depth in ChIP-seq experiments. <i>Nucleic Acids Research</i> , 2014 , 42, e74	20.1	49
38	Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. <i>Cell</i> , 2013 , 155, 948-62	56.2	478
37	The landscape of microsatellite instability in colorectal and endometrial cancer genomes. <i>Cell</i> , 2013 , 155, 858-68	56.2	247
36	Nozzle: a report generation toolkit for data analysis pipelines. <i>Bioinformatics</i> , 2013 , 29, 1089-91	7.2	15
35	Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes. <i>Genome Research</i> , 2013 , 23, 217-27	9.7	111
35			
	genomes. <i>Genome Research</i> , 2013 , 23, 217-27		
34	genomes. <i>Genome Research</i> , 2013 , 23, 217-27 Diverse mechanisms of somatic structural variations in human cancer genomes. <i>Cell</i> , 2013 , 153, 919-29 A dynamic H3K27ac signature identifies VEGFA-stimulated endothelial enhancers and requires	56.2	238
34	genomes. <i>Genome Research</i> , 2013 , 23, 217-27 Diverse mechanisms of somatic structural variations in human cancer genomes. <i>Cell</i> , 2013 , 153, 919-29 A dynamic H3K27ac signature identifies VEGFA-stimulated endothelial enhancers and requires EP300 activity. <i>Genome Research</i> , 2013 , 23, 917-27 Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters. <i>Proceedings of the National Academy of Sciences of the United States of America</i> ,	56.2 9·7	238
34 33 32	Diverse mechanisms of somatic structural variations in human cancer genomes. <i>Cell</i> , 2013 , 153, 919-29 A dynamic H3K27ac signature identifies VEGFA-stimulated endothelial enhancers and requires EP300 activity. <i>Genome Research</i> , 2013 , 23, 917-27 Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 10165-70 ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. <i>Genome Research</i> ,	56.2 9.7 11.5	238 64 127 1211
34 33 32 31	Diverse mechanisms of somatic structural variations in human cancer genomes. <i>Cell</i> , 2013 , 153, 919-29 A dynamic H3K27ac signature identifies VEGFA-stimulated endothelial enhancers and requires EP300 activity. <i>Genome Research</i> , 2013 , 23, 917-27 Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 10165-70 ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. <i>Genome Research</i> , 2012 , 22, 1813-31	56.2 9·7 11.5	238 64 127
34 33 32 31 30	Diverse mechanisms of somatic structural variations in human cancer genomes. <i>Cell</i> , 2013 , 153, 919-29 A dynamic H3K27ac signature identifies VEGFA-stimulated endothelial enhancers and requires EP300 activity. <i>Genome Research</i> , 2013 , 23, 917-27 Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 10165-70 ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. <i>Genome Research</i> , 2012 , 22, 1813-31 Response to Brosch et al. <i>Cell Metabolism</i> , 2012 , 15, 267-269 Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human	56.2 9.7 11.5 9.7 24.6	238 64 127 1211 4

26	Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells. <i>Nature Genetics</i> , 2012 , 44, 398-405, S1-2	36.3	216
25	Landscape of somatic retrotransposition in human cancers. <i>Science</i> , 2012 , 337, 967-71	33.3	507
24	Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. <i>Nature</i> , 2011 , 471, 480)-5 0.4	641
23	Copy number variation detection in whole-genome sequencing data using the Bayesian information criterion. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, E17	128-36	163
22	A region of the human HOXD cluster that confers polycomb-group responsiveness. <i>Cell</i> , 2010 , 140, 99-1	150 6.2	250
21	Dosage compensation in drosophila: Sequence-specific initiation and sequence-independent spreading of MSL complex to the active genes on the male X chromosome. <i>Russian Journal of Genetics</i> , 2010 , 46, 1263-1266	0.6	
20	Analysis of primary structure of chromatin with next-generation sequencing. <i>Epigenomics</i> , 2010 , 2, 187-	1,9.74	10
19	Comparative analysis of H2A.Z nucleosome organization in the human and yeast genomes. <i>Genome Research</i> , 2009 , 19, 967-77	9.7	77
18	Integration of heterogeneous expression data sets extends the role of the retinol pathway in diabetes and insulin resistance. <i>Bioinformatics</i> , 2009 , 25, 3121-7	7.2	17
17	ChIP-seq: advantages and challenges of a maturing technology. <i>Nature Reviews Genetics</i> , 2009 , 10, 669-	89 0.1	1331
16	Design and analysis of ChIP-seq experiments for DNA-binding proteins. <i>Nature Biotechnology</i> , 2008 , 26, 1351-9	44.5	662
15	Epigenetics meets next-generation sequencing. <i>Epigenetics</i> , 2008 , 3, 318-21	5.7	34
14	Normalization and experimental design for ChIP-chip data. <i>BMC Bioinformatics</i> , 2007 , 8, 219	3.6	41
13	Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data. <i>Bioinformatics</i> , 2005 , 21, 3763-70	7.2	310
12	The 4D Nucleome Data Portal: a resource for searching and visualizing curated nucleomics data		3
11	HiGlass: Web-based Visual Exploration and Analysis of Genome Interaction Maps		11
10	PaSD-qc: Quality control for single cell whole-genome sequencing data using power spectral density estimation		2
9	The Landscape of Mutational Mosaicism in Autistic and Normal Human Cerebral Cortex		5

8	Linked-read analysis identifies mutations in single cell DNA sequencing data	5
7	Aging and neurodegeneration are associated with increased mutations in single human neurons	3
6	Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing	12
5	HiNT: a computational method for detecting copy number variations and translocations from Hi-C data	2
4	Micro-Meta App: an interactive software tool to facilitate the collection of microscopy metadata based on community-driven specifications	6
3	Ultraspecific somatic SNV and indel detection in single neurons using primary template-directed amplificatio	Π 2
2	Pairs and Pairix: a file format and a tool for efficient storage and retrieval for Hi-C read pairs	2
1	Whole-genome analysis ofde novoand polymorphic retrotransposon insertions in Autism Spectrum Disorder	1