Koji Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/209708/publications.pdf Version: 2024-02-01

Κομ Τλκληλεμι

#	Article	IF	CITATIONS
1	Identification of stomatal-regulating molecules from de novo arylamine collection through aromatic C–H amination. Scientific Reports, 2022, 12, 949.	3.3	5
2	Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature, 2021, 599, 273-277.	27.8	128
3	TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature, 2021, 599, 278-282.	27.8	125
4	Identification of Abscisic Acid-Dependent Phosphorylated Basic Helix-Loop-Helix Transcription Factors in Guard Cells of Vicia faba by Mass Spectrometry. Frontiers in Plant Science, 2021, 12, 735271.	3.6	3
5	A super-sensitive auxin-inducible degron system with an engineered auxin-TIR1 pair. Nucleic Acids Research, 2020, 48, e108-e108.	14.5	32
6	Pinstatic Acid Promotes Auxin Transport by Inhibiting PIN Internalization. Plant Physiology, 2019, 180, 1152-1165.	4.8	21
7	Brassinosteroid Induces Phosphorylation of the Plasma Membrane H+-ATPase during Hypocotyl Elongation in Arabidopsis thaliana. Plant and Cell Physiology, 2019, 60, 935-944.	3.1	46
8	Chemical hijacking of auxin signaling with an engineered auxin–TIR1 pair. Nature Chemical Biology, 2018, 14, 299-305.	8.0	107
9	Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nature Plants, 2018, 4, 453-459.	9.3	198
10	A Super Strong Engineered Auxin–TIR1 Pair. Plant and Cell Physiology, 2018, 59, 1538-1544.	3.1	25
11	Harnessing synthetic chemistry to probe and hijack auxin signaling. New Phytologist, 2018, 220, 417-424.	7.3	12
12	The Regulation of Plant Cell Expansion: Auxin-Induced Turgor-Driven Cell Elongation. , 2016, , 156-173.		3
13	Auxin Influx Carrier AUX1 Confers Acid Resistance for Arabidopsis Root Elongation Through the Regulation of Plasma Membrane H ⁺ -ATPase. Plant and Cell Physiology, 2016, 57, 2194-2201.	3.1	40
14	A Flowering Integrator, SOC1, Affects Stomatal Opening in Arabidopsis thaliana. Plant and Cell Physiology, 2015, 56, 640-649.	3.1	45
15	Abscisic Acid Suppresses Hypocotyl Elongation by Dephosphorylating Plasma Membrane H+-ATPase in Arabidopsis thaliana. Plant and Cell Physiology, 2014, 55, 845-853.	3.1	85
16	Mg-chelatase I subunit 1 and Mg-protoporphyrin IX methyltransferase affect the stomatal aperture in Arabidopsis thaliana. Journal of Plant Research, 2014, 127, 553-563.	2.4	21
17	Overexpression of the Mg-chelatase H subunit in guard cells confers drought tolerance via promotion of stomatal closure in Arabidopsis thaliana. Frontiers in Plant Science, 2013, 4, 440.	3.6	30
18	Evolutionary appearance of the plasma membrane H ⁺ -ATPase containing a penultimate threonine in the bryophyte. Plant Signaling and Behavior, 2012, 7, 979-982.	2.4	25

Κοјι Τακαμάσηι

#	Article	IF	CITATIONS
19	Characterization of the Plasma Membrane H+-ATPase in the Liverwort <i>Marchantia polymorpha</i> Â Â Â. Plant Physiology, 2012, 159, 826-834.	4.8	42
20	Auxin Activates the Plasma Membrane H+-ATPase by Phosphorylation during Hypocotyl Elongation in Arabidopsis Â. Plant Physiology, 2012, 159, 632-641.	4.8	285
21	Mg-chelatase H subunit affects ABA signaling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana. Journal of Plant Research, 2011, 124, 527-538.	2.4	73
22	Immunohistochemical Detection of Blue Light-Induced Phosphorylation of the Plasma Membrane H+-ATPase in Stomatal Guard Cells. Plant and Cell Physiology, 2011, 52, 1238-1248.	3.1	110
23	Wall-Yielding Properties of Cell Walls from Elongating Cucumber Hypocotyls in Relation to the Action of Expansin. Plant and Cell Physiology, 2006, 47, 1520-1529.	3.1	28