
Tsutomu Minegishi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/20965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface Modification of CoO _{<i>x</i>} Loaded BiVO ₄ Photoanodes with Ultrathin <i>p</i> -Type NiO Layers for Improved Solar Water Oxidation. Journal of the American Chemical Society, 2015, 137, 5053-5060.	6.6	542
2	A Particulate Photocatalyst Water-Splitting Panel for Large-Scale Solar Hydrogen Generation. Joule, 2018, 2, 509-520.	11.7	468
3	Vertically Aligned Ta ₃ N ₅ Nanorod Arrays for Solarâ€Driven Photoelectrochemical Water Splitting. Advanced Materials, 2013, 25, 125-131.	11.1	363
4	Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure. Journal of the American Chemical Society, 2017, 139, 1675-1683.	6.6	322
5	Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalystÂregeneration. Nature Energy, 2017, 2, .	19.8	298
6	Stable Hydrogen Evolution from CdS-Modified CuGaSe ₂ Photoelectrode under Visible-Light Irradiation. Journal of the American Chemical Society, 2013, 135, 3733-3735.	6.6	287
7	Pt/In ₂ S ₃ /CdS/Cu ₂ ZnSnS ₄ Thin Film as an Efficient and Stable Photocathode for Water Reduction under Sunlight Radiation. Journal of the American Chemical Society, 2015, 137, 13691-13697.	6.6	262
8	Photoelectrochemical properties of LaTiO2N electrodes prepared by particle transfer for sunlight-driven water splitting. Chemical Science, 2013, 4, 1120.	3.7	258
9	Enhancement of Solar Hydrogen Evolution from Water by Surface Modification with CdS and TiO ₂ on Porous CuInS ₂ Photocathodes Prepared by an Electrodeposition–Sulfurization Method. Angewandte Chemie - International Edition, 2014, 53, 11808-11812.	7.2	181
10	Efficient Photocatalytic Water Splitting Using Al-Doped SrTiO ₃ Coloaded with Molybdenum Oxide and Rhodium–Chromium Oxide. ACS Catalysis, 2018, 8, 2782-2788.	5.5	180
11	Mg–Zr Cosubstituted Ta ₃ N ₅ Photoanode for Lower-Onset-Potential Solar-Driven Photoelectrochemical Water Splitting. Journal of the American Chemical Society, 2015, 137, 12780-12783.	6.6	176
12	Photoelectrochemical Oxidation of Water Using BaTaO ₂ N Photoanodes Prepared by Particle Transfer Method. Journal of the American Chemical Society, 2015, 137, 2227-2230.	6.6	167
13	An Al-doped SrTiO ₃ photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000Âh of constant illumination. Chemical Science, 2019, 10, 3196-3201.	3.7	163
14	Photoelectrochemical water splitting using a Cu(In,Ga)Se2 thin film. Electrochemistry Communications, 2010, 12, 851-853.	2.3	156
15	Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In,Ga)Se ₂ photocathodes. Journal of Materials Chemistry A, 2015, 3, 8300-8307.	5.2	155
16	H ₂ Evolution from Water on Modified Cu ₂ ZnSnS ₄ Photoelectrode under Solar Light. Applied Physics Express, 2010, 3, 101202.	1.1	154
17	Selective CO production by Au coupled ZnTe/ZnO in the photoelectrochemical CO ₂ reduction system. Energy and Environmental Science, 2015, 8, 3597-3604.	15.6	152
18	Ta3N5 photoanodes for water splitting prepared by sputtering. Thin Solid Films, 2011, 519, 2087-2092.	0.8	136

Тѕитоми Мінесіяні

#	Article	IF	CITATIONS
19	Behavior and Energy States of Photogenerated Charge Carriers on Pt- or CoO _{<i>x</i>} -Loaded LaTiO ₂ N Photocatalysts: Time-Resolved Visible to Mid-Infrared Absorption Study. Journal of Physical Chemistry C, 2014, 118, 23897-23906.	1.5	132
20	Efficient Redox-Mediator-Free Z-Scheme Water Splitting Employing Oxysulfide Photocatalysts under Visible Light. ACS Catalysis, 2018, 8, 1690-1696.	5.5	127
21	Photocatalytic Hydrogen Evolution from Water Using Copper Gallium Sulfide under Visible-Light Irradiation. Journal of Physical Chemistry C, 2010, 114, 11215-11220.	1.5	126
22	Photocatalytic oxygen evolution using BaNbO2N modified with cobalt oxide under photoexcitation up to 740 nm. Energy and Environmental Science, 2013, 6, 3595.	15.6	125
23	Development of highly efficient Culn _{0.5} Ga _{0.5} Se ₂ -based photocathode and application to overall solar driven water splitting. Energy and Environmental Science, 2018, 11, 3003-3009.	15.6	122
24	Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight. ChemSusChem, 2016, 9, 61-66.	3.6	112
25	Structural variation of cubic and hexagonal MgxZn1â^'xO layers grown on MgO(111)â^•c-sapphire. Journal of Applied Physics, 2005, 98, 054911.	1.1	107
26	A Novel Photocathode Material for Sunlightâ€Đriven Overall Water Splitting: Solid Solution of ZnSe and Cu(In,Ga)Se ₂ . Advanced Functional Materials, 2016, 26, 4570-4577.	7.8	104
27	Photoelectrochemical hydrogen production on Cu2ZnSnS4/Mo-mesh thin-film electrodes prepared by electroplating. Chemical Physics Letters, 2011, 501, 619-622.	1.2	103
28	Solution-Processed Cd-Substituted CZTS Photocathode for Efficient Solar Hydrogen Evolution from Neutral Water. Joule, 2018, 2, 537-548.	11.7	102
29	Visible Light-Driven Z-Scheme Water Splitting Using Oxysulfide H ₂ Evolution Photocatalysts. Journal of Physical Chemistry Letters, 2016, 7, 3892-3896.	2.1	101
30	Platinum and indium sulfide-modified CuInS ₂ as efficient photocathodes for photoelectrochemical water splitting. Chemical Communications, 2014, 50, 8941-8943.	2.2	98
31	Structural and optical properties of non-polar A-plane ZnO films grown on R-plane sapphire substrates by plasma-assisted molecular-beam epitaxy. Journal of Crystal Growth, 2007, 309, 121-127.	0.7	90
32	Durable hydrogen evolution from water driven by sunlight using (Ag,Cu)GaSe ₂ photocathodes modified with CdS and CuGa ₃ Se ₅ . Chemical Science, 2015, 6, 894-901.	3.7	89
33	Photoelectrochemical Hydrogen Evolution from Water Using Copper Gallium Selenide Electrodes Prepared by a Particle Transfer Method. Journal of Physical Chemistry C, 2014, 118, 16386-16392.	1.5	86
34	Ta ₃ N ₅ -Nanorods enabling highly efficient water oxidation <i>via</i> advantageous light harvesting and charge collection. Energy and Environmental Science, 2020, 13, 1519-1530.	15.6	80
35	Photocatalyst Sheets Composed of Particulate LaMg _{1/3} Ta _{2/3} O ₂ N and Mo-Doped BiVO ₄ for Z-Scheme Water Splitting under Visible Light. ACS Catalysis, 2016, 6, 7188-7196.	5.5	79
36	Photoreduction of Water by using Modified CuInS ₂ Electrodes. ChemSusChem, 2011, 4, 262-268.	3.6	78

Тѕитоми Мінесіяні

#	Article	IF	CITATIONS
37	Transparent Ta ₃ N ₅ Photoanodes for Efficient Oxygen Evolution toward the Development of Tandem Cells. Angewandte Chemie - International Edition, 2019, 58, 2300-2304.	7.2	75
38	Trapped State Sensitive Kinetics in LaTiO ₂ N Solid Photocatalyst with and without Cocatalyst Loading. Journal of the American Chemical Society, 2014, 136, 17324-17331.	6.6	70
39	Kinetic Assessment and Numerical Modeling of Photocatalytic Water Splitting toward Efficient Solar Hydrogen Production. Bulletin of the Chemical Society of Japan, 2012, 85, 647-655.	2.0	69
40	Band engineering of perovskite-type transition metal oxynitrides for photocatalytic overall water splitting. Journal of Materials Chemistry A, 2016, 4, 4544-4552.	5.2	69
41	Photoelectrochemical Water Splitting on Particulate ANbO ₂ N (A = Ba, Sr) Photoanodes Prepared from Perovskite-Type ANbO ₃ . Chemistry of Materials, 2016, 28, 6869-6876.	3.2	68
42	Synthesis of Nanostructured BaTaO ₂ N Thin Films as Photoanodes for Solar Water Splitting. Journal of Physical Chemistry C, 2016, 120, 15758-15764.	1.5	68
43	Metal selenide photocatalysts for visible-light-driven <i>Z</i> -scheme pure water splitting. Journal of Materials Chemistry A, 2019, 7, 7415-7422.	5.2	67
44	Hydrogen evolution from water using AgxCu1â^'xGaSe2 photocathodes under visible light. Physical Chemistry Chemical Physics, 2014, 16, 6167.	1.3	66
45	Ordered Arrays of ZnO Nanorods Grown on Periodically Polarity-Inverted Surfaces. Nano Letters, 2008, 8, 2419-2422.	4.5	64
46	Photoreduced Graphene Oxide as a Conductive Binder to Improve the Water Splitting Activity of Photocatalyst Sheets. Advanced Functional Materials, 2016, 26, 7011-7019.	7.8	62
47	Improving the photoelectrochemical activity of La ₅ Ti ₂ CuS ₅ O ₇ for hydrogen evolution by particle transfer and doping. Energy and Environmental Science, 2014, 7, 2239-2242.	15.6	61
48	Development of a Core–Shell Heterojunction Ta ₃ N ₅ -Nanorods/BaTaO ₂ N Photoanode for Solar Water Splitting. ACS Energy Letters, 2020, 5, 2492-2497.	8.8	58
49	Enhanced photoelectrochemical properties of CuGa ₃ Se ₅ thin films for water splitting by the hydrogen mediated co-evaporation method. Energy and Environmental Science, 2012, 5, 6368-6374.	15.6	56
50	Efficient Solarâ€Ðriven Water Oxidation over Perovskiteâ€Type BaNbO ₂ N Photoanodes Absorbing Visible Light up to 740 nm. Advanced Energy Materials, 2018, 8, 1800094.	10.2	56
51	La ₅ Ti ₂ Cu _{1â^²x} Ag _x S ₅ O ₇ photocather operating at positive potentials during photoelectrochemical hydrogen evolution under irradiation of up to 710 nm. Energy and Environmental Science, 2015, 8, 3354-3362.	odes 15.6	55
52	Photoelectrochemical Conversion of Toluene to Methylcyclohexane as an Organic Hydride by Cu ₂ ZnSnS ₄ -Based Photoelectrode Assemblies. Journal of the American Chemical Society, 2012, 134, 2469-2472.	6.6	53
53	Adrenomedullin and atrial natriuretic peptide concentrations in normal pregnancy and pre-eclampsia. Molecular Human Reproduction, 1999, 5, 767-770.	1.3	52
54	A Role of Insulin-Like Growth Factor I for Follicle-Stimulating Hormone Receptor Expression in Rat Granulosa Cells1. Biology of Reproduction, 2000, 62, 325-333.	1.2	52

Тѕитоми Міледіяні

#	Article	IF	CITATIONS
55	Lattice relaxation mechanism of ZnO thin films grown on c-Al2O3 substrates by plasma-assisted molecular-beam epitaxy. Applied Physics Letters, 2007, 91, .	1.5	50
56	The cross-substitution effect of tantalum on the visible-light-driven water oxidation activity of BaNbO ₂ N crystals grown directly by an NH ₃ -assisted flux method. Journal of Materials Chemistry A, 2016, 4, 12807-12817.	5.2	50
57	Photoelectrochemical properties of SrNbO ₂ N photoanodes for water oxidation fabricated by the particle transfer method. Faraday Discussions, 2014, 176, 213-223.	1.6	49
58	Recent Progress in the Surface Modification of Photoelectrodes toward Efficient and Stable Overall Water Splitting. Chemistry - A European Journal, 2018, 24, 5697-5706.	1.7	49
59	Surgery for endometrial cancers with suspected cervical involvement: is radical hysterectomy needed (a GOTIC study)?. British Journal of Cancer, 2013, 109, 1760-1765.	2.9	47
60	Photoelectrochemical hydrogen evolution from water on a surface modified CdTe thin film electrode under simulated sunlight. Journal of Materials Chemistry A, 2017, 5, 4486-4492.	5.2	47
61	Overall water splitting by photoelectrochemical cells consisting of (ZnSe) _{0.85} (CuIn _{0.7} Ga _{0.3} Se ₂) _{0.15} photocathodes and BiVO ₄ photoanodes. Chemical Communications, 2017, 53, 11674-11677.	2.2	47
62	A SrTiO ₃ photoanode prepared by the particle transfer method for oxygen evolution from water with high quantum efficiencies. Chemical Communications, 2016, 52, 5011-5014.	2.2	46
63	Issues in ZnO homoepitaxy. Superlattices and Microstructures, 2005, 38, 349-363.	1.4	45
64	Polarity control of ZnO films on (0001) Al2O3 by Cr-compound intermediate layers. Applied Physics Letters, 2007, 90, 201907.	1.5	45
65	Particulate photocatalyst sheets for Z-scheme water splitting: advantages over powder suspension and photoelectrochemical systems and future challenges. Faraday Discussions, 2017, 197, 491-504.	1.6	45
66	The Effects of Preparation Conditions for a BaNbO ₂ N Photocatalyst on Its Physical Properties. ChemSusChem, 2014, 7, 2016-2021.	3.6	42
67	Highly Efficient Water Oxidation Photoanode Made of Surface Modified LaTiO ₂ N Particles. Small, 2016, 12, 5468-5476.	5.2	42
68	Effects of flux synthesis on SrNbO ₂ N particles for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2016, 4, 7658-7664.	5.2	42
69	Bulky crystalline BiVO ₄ thin films for efficient solar water splitting. Journal of Materials Chemistry A, 2016, 4, 9858-9864.	5.2	40
70	Enhanced Hydrogen Evolution under Simulated Sunlight from Neutral Electrolytes on (ZnSe) _{0.85} (Culn _{0.7} Ga _{0.3} Se ₂) _{0.15} Photocathodes Prepared by a Bilayer Method. Angewandte Chemie - International Edition, 2016, 55, 15329-15333.	7.2	38
71	Efficient hydrogen evolution from water using CdTe photocathodes under simulated sunlight. Journal of Materials Chemistry A, 2017, 5, 13154-13160.	5.2	38
72	Site-selective photodeposition of Pt on a particulate Sc-La5Ti2CuS5O7 photocathode: evidence for one-dimensional charge transfer. Chemical Communications, 2015, 51, 4302-4305.	2.2	36

Тѕитоми Мілесіяні

#	Article	IF	CITATIONS
73	Photoanodic and photocathodic behaviour of La ₅ Ti ₂ CuS ₅ O ₇ electrodes in the water splitting reaction. Chemical Science, 2015, 6, 4513-4518.	3.7	36
74	Efficient photocatalytic oxygen evolution using BaTaO ₂ N obtained from nitridation of perovskite-type oxide. Journal of Materials Chemistry A, 2020, 8, 1127-1130.	5.2	35
75	A CoOx-modified SnNb2O6photoelectrode for highly efficient oxygen evolution from water. Chemical Communications, 2017, 53, 629-632.	2.2	33
76	Solar-Driven Water Splitting over a BaTaO ₂ N Photoanode Enhanced by Annealing in Argon. ACS Applied Energy Materials, 2019, 2, 5777-5784.	2.5	33
77	Regulation of Midkine Messenger Ribonucleic Acid Levels in Cultured Rat Granulosa Cells. Biochemical and Biophysical Research Communications, 1996, 229, 799-805.	1.0	32
78	Sunlightâ€Driven Overall Water Splitting by the Combination of Surfaceâ€Modified La ₅ Ti ₂ Cu _{0.9} Ag _{0.1} S ₅ O ₇ and BaTaO ₂ N Photoelectrodes. ChemPhotoChem, 2017, 1, 167-172.	1.5	32
79	Probing fundamental losses in nanostructured Ta ₃ N ₅ photoanodes: design principles for efficient water oxidation. Energy and Environmental Science, 2021, 14, 4038-4047.	15.6	31
80	High-Quality p-Type ZnO Films Grown by Co-Doping of N and Te on Zn-Face ZnO Substrates. Applied Physics Express, 2010, 3, 031103.	1.1	30
81	The mechanisms of retinoic acid-induced regulation on the follicle-stimulating hormone receptor in rat granulosa cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2000, 1495, 203-211.	1.9	29
82	Effect of particle size of La5Ti2CuS5O7on photoelectrochemical properties in solar hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 4848-4854.	5.2	28
83	Powder-based (CuGa _{1â^'y} In _y 1â^'xZn _{2x} S ₂ solid solution photocathodes with a largely positive onset potential for solar water splitting. Sustainable Energy and Fuels, 2018, 2, 2016-2024.	2.5	28
84	Particulate photocatalyst sheets based on non-oxide semiconductor materials for water splitting under visible light irradiation. Catalysis Science and Technology, 2018, 8, 3918-3925.	2.1	27
85	The effects of annealing barium niobium oxynitride in argon on photoelectrochemical water oxidation activity. Journal of Materials Chemistry A, 2019, 7, 493-502.	5.2	27
86	Effects of interfacial layer structures on crystal structural properties of ZnO films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 90-96.	0.9	26
87	Kinetics of Distance-Dependent Recombination between Geminate Charge Carriers by Diffusion under Coulomb Interaction. Journal of Physical Chemistry C, 2015, 119, 5364-5373.	1.5	26
88	Thin film transfer for the fabrication of tantalum nitride photoelectrodes with controllable layered structures for water splitting. Chemical Science, 2016, 7, 5821-5826.	3.7	26
89	Structural characterization of MgxZn1â^xO/ZnO heterostructures. Journal of Crystal Growth, 2007, 306, 269-275.	0.7	25
90	A miniature solar device for overall water splitting consisting of series-connected spherical silicon solar cells. Scientific Reports, 2016, 6, 24633.	1.6	25

#	ARTICLE	IF	CITATIONS
91	Crystal Structure, Electronic Structure, and Photocatalytic Activity of Oxysulfides: La ₂ Ta ₂ ZrS ₂ O ₈ , La ₂ Ta ₂ TiS ₂ O ₈ , and La ₂ Nb ₂ TiS ₂ O ₈ . Inorganic Chemistry, 2016, 55,	1.9	25
92	5074-5079. Efficient hydrogen evolution on (CulnS ₂) _x (ZnS) _{1â^x} solid solution-based photocathodes under simulated sunlight. Chemical Communications, 2019, 55, 470-473.	2.2	25
93	A particulate (ZnSe) _{0.85} (CuIn _{0.7} Ga _{0.3} Se ₂) _{0.15} photocathode modified with CdS and ZnS for sunlight-driven overall water splitting. Journal of Materials Chemistry A. 2017. 5. 21242-21248.	5.2	23
94	CdTe-Based Photoanode for Oxygen Evolution from Water under Simulated Sunlight. Journal of Physical Chemistry Letters, 2017, 8, 5712-5717.	2.1	23
95	Activation of a particulate Ta ₃ N ₅ water-oxidation photoanode with a GaN hole-blocking layer. Sustainable Energy and Fuels, 2018, 2, 73-78.	2.5	23
96	Expression of steroidogenic acute regulatory protein (StAR) in rat granulosa cells. Life Sciences, 2000, 67, 1015-1024.	2.0	22
97	Relation between interdiffusion and polarity for MBE growth of GaN epilayers on ZnO substrates. Current Applied Physics, 2004, 4, 643-646.	1.1	22
98	Selective growth of Zn- and O-polar ZnO layers by plasma-assisted molecular beam epitaxy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1286.	1.6	22
99	Strain-free GaN thick films grown on single crystalline ZnO buffer layer with in situ lift-off technique. Applied Physics Letters, 2007, 90, 061907.	1.5	22
100	Expression of gonadotropin and activin receptor messenger ribonucleic acid in human ovarian epithelial neoplasms. Clinical Cancer Research, 2000, 6, 2764-70.	3.2	22
101	Chalcopyrite Thin Film Materials for Photoelectrochemical Hydrogen Evolution from Water under Sunlight. Coatings, 2015, 5, 293-311.	1.2	21
102	Investigation on nitridation processes of Sr2Nb2O7 and SrNbO3 to SrNbO2N for photoelectrochemical water splitting. Scientific Reports, 2018, 8, 15849.	1.6	21
103	Enhanced Photoelectrochemical Water Oxidation from CdTe Photoanodes Annealed with CdCl ₂ . Angewandte Chemie - International Edition, 2020, 59, 13800-13806.	7.2	21
104	Investigation of the crystallinity of N and Te codoped Zn-polar ZnO films grown by plasma-assisted molecular-beam epitaxy. Journal of Applied Physics, 2010, 108, 093518.	1.1	20
105	A novel flux coating method for the fabrication of layers of visible-light-responsive Ta ₃ N ₅ crystals on tantalum substrates. Journal of Materials Chemistry A, 2015, 3, 13946-13952.	5.2	20
106	Conversion Reaction in the Binder-Free Anode for Fast-Charging Li-Ion Batteries Based on WO ₃ Nanorods. ACS Applied Energy Materials, 2020, 3, 6700-6708.	2.5	20
107	p-type conductivity control of heteroepitaxially grown ZnO films by N and Te codoping and thermal annealing. Journal of Crystal Growth, 2013, 363, 190-194.	0.7	19
108	Lattice deformation of ZnO films with high nitrogen concentration. Applied Surface Science, 2008, 254, 7972-7975.	3.1	18

Тѕитоми Мілесіяні

#	Article	IF	CITATIONS
109	Effects of flux treatment on morphology of single-crystalline BaNbO ₂ N particles. CrystEngComm, 2016, 18, 3186-3190.	1.3	18
110	Stable Hydrogen Production from Water on an NIRâ€Responsive Photocathode under Harsh Conditions. Small Methods, 2018, 2, 1800018.	4.6	18
111	Plate-like Sm ₂ Ti ₂ S ₂ O ₅ Particles Prepared by a Flux-Assisted One-Step Synthesis for the Evolution of O ₂ from Aqueous Solutions by Both Photocatalytic and Photoelectrochemical Reactions. Journal of Physical Chemistry C, 2018, 122, 13492-13499.	1.5	18
112	Effects of annealing conditions on the oxygen evolution activity of a BaTaO2N photocatalyst loaded with cobalt species. Catalysis Today, 2020, 354, 204-210.	2.2	18
113	Investigation of Cu-Deficient Copper Gallium Selenide Thin Film as a Photocathode for Photoelectrochemical Water Splitting. Japanese Journal of Applied Physics, 2012, 51, 015802.	0.8	18
114	Enhancement of the H ₂ evolution activity of La ₅ Ti ₂ Cu(S _{1â^x} Se _x) ₅ O ₇ photocatalysts by coloading Pt and NiS cocatalysts. Journal of Materials Chemistry A, 2017, 5, 6106-6112.	5.2	17
115	Enhancement of Charge Separation and Hydrogen Evolution on Particulate La ₅ Ti ₂ CuS ₅ O ₇ Photocathodes by Surface Modification. Journal of Physical Chemistry Letters, 2017, 8, 375-379.	2.1	17
116	Effects of Se Incorporation in La ₅ Ti ₂ CuS ₅ O ₇ by Annealing on Physical Properties and Photocatalytic H ₂ Evolution Activity. ACS Applied Materials & Interfaces, 2019, 11, 5595-5601.	4.0	17
117	Growth mechanism of ZnO low-temperature homoepitaxy. Journal of Applied Physics, 2011, 110, .	1.1	16
118	Synthesis and Photocatalytic Activity of La ₅ Ti ₂ Cu(S _{1â^{^,}<i>x</i>} Se _{<i>x</i>}) ₅ O _{7< Solid Solutions for H₂ Production under Visible Light Irradiation. ChemPhotoChem, 2017, 1, 265-272.}	/sub> 1.5	16
119	Investigation of charge separation in particulate oxysulfide and oxynitride photoelectrodes by surface photovoltage spectroscopy. Chemical Physics Letters, 2017, 683, 140-144.	1.2	16
120	Efficient Water Oxidation Using Ta 3 N 5 Thin Film Photoelectrodes Prepared on Insulating Transparent Substrates. ChemSusChem, 2020, 13, 1974-1978.	3.6	16
121	Retinoic Acid (RA) Represses Follicle Stimulating Hormone (FSH)-Induced Luteinizing Hormone (LH) Receptor in Rat Granulosa Cells. Archives of Biochemistry and Biophysics, 2000, 373, 203-210.	1.4	15
122	Investigation on the ZnO:N films grown on (0001) and (0001Â ⁻) ZnO templates by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth, 2009, 311, 2167-2171.	0.7	15
123	Particulate photocathode composed of (ZnSe) _{0.85} (CuIn _{0.7} Ga _{0.3} Se ₂) _{0.15} synthesized with Na ₂ S for enhanced sunlight-driven hydrogen evolution. Sustainable Energy and Fuels. 2018. 2, 1957-1965.	2.5	15
124	Growth of Polarity-Controlled ZnO Films on (0001) Al2O3. Journal of Electronic Materials, 2008, 37, 736-742.	1.0	14
125	Investigation of Cu-Deficient Copper Gallium Selenide Thin Film as a Photocathode for Photoelectrochemical Water Splitting. Japanese Journal of Applied Physics, 2012, 51, 015802.	0.8	14
126	Follicle-stimulating hormone regulation on its receptor messenger ribonucleic acid levels in cultured rat granulosa cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1997, 1359, 165-173.	1.9	13

Тѕитоми Міледіяні

#	Article	IF	CITATIONS
127	Effects of interfacial layers on the photoelectrochemical properties of tantalum nitride photoanodes for solar water splitting. Journal of Materials Chemistry A, 2016, 4, 13837-13843.	5.2	13
128	Surface Protective and Catalytic Layer Consisting of RuO2 and Pt for Stable Production of Methylcyclohexane Using Solar Energy. ACS Applied Materials & Interfaces, 2018, 10, 44396-44402.	4.0	13
129	La 5 Ti 2 Cu 0.9 Ag 0.1 S 5 O 7 Modified with a Molecular Ni Catalyst for Photoelectrochemical H 2 Generation. Chemistry - A European Journal, 2018, 24, 18393-18397.	1.7	13
130	A Semitransparent Nitride Photoanode Responsive up to <i>λ</i> =600â€nm Based on a Carbon Nanotube Thin Film Electrode. ChemPhotoChem, 2019, 3, 521-524.	1.5	13
131	Defect and interface studies of ZnO/MgxZn1â^'xO heterostructures. Journal of Physics and Chemistry of Solids, 2008, 69, 497-500.	1.9	11
132	A Photoelectrochemical Solar Cell Consisting of a Cadmium Sulfide Photoanode and a Ruthenium–2,2′â€Bipyridine Redox Shuttle in a Nonâ€aqueous Electrolyte. Angewandte Chemie - International Edition, 2015, 54, 7877-7881.	7.2	11
133	Synthesis of Concentrated Methylcyclohexane as Hydrogen Carrier through Photoelectrochemical Conversion of Toluene and Water. ChemSusChem, 2017, 10, 659-663.	3.6	11
134	Electrochemical Evaluation for Multiple Functions of Ptâ€loaded TiO 2 Nanoparticles Deposited on a Photocathode. ChemElectroChem, 2019, 6, 4859-4866.	1.7	11
135	Suppression of poisoning of photocathode catalysts in photoelectrochemical cells for highly stable sunlight-driven overall water splitting. Journal of Chemical Physics, 2019, 150, 041713.	1.2	11
136	The high quality ZnO growth on c-Al2O3 substrate with Cr2O3 buffer layer using plasma-assisted molecular beam epitaxy. Applied Surface Science, 2008, 254, 7786-7789.	3.1	10
137	Structural and optical investigations of periodically polarity inverted ZnO heterostructures on (0001) Al2O3. Applied Physics Letters, 2009, 94, 141904.	1.5	10
138	Efficient photoelectrochemical hydrogen production over CuInS ₂ photocathodes modified with amorphous Ni-MoS _x operating in a neutral electrolyte. Sustainable Energy and Fuels, 2020, 4, 1607-1611.	2.5	10
139	Transparent Ta ₃ N ₅ Photoanodes for Efficient Oxygen Evolution toward the Development of Tandem Cells. Angewandte Chemie, 2019, 131, 2322-2326.	1.6	9
140	Control of crystal polarity in oxide and nitride semiconductors by interface engineering. Journal of Electroceramics, 2006, 17, 255-261.	0.8	8
141	Low-temperature growth of high-quality ZnO layers by surfactant-mediated molecular-beam epitaxy. Journal of Crystal Growth, 2007, 309, 158-163.	0.7	8
142	Influence of Isoelectronic Te Doping on the Physical Properties of ZnO Films Grown by Molecular-Beam Epitaxy. Japanese Journal of Applied Physics, 2013, 52, 055501.	0.8	8
143	Conversion of Toluene and Water to Methylcyclohexane and Oxygen using Niobiumâ€Doped Strontium Titanate Photoelectrodes. ChemSusChem, 2014, 7, 2690-2694.	3.6	8
144	Enhanced Hydrogen Evolution under Simulated Sunlight from Neutral Electrolytes on (ZnSe) _{0.85} (CuIn _{0.7} Ca _{0.3} Se ₂) _{0.15} Photocathodes Prepared by a Bilayer Method. Angewandte Chemie, 2016, 128, 15555-15559.	1.6	8

#	Article	IF	CITATIONS
145	Effects of Calcination Temperature on the Physical Properties and Hydrogen Evolution Activities of La ₅ Ti ₂ Cu(S _{1â€} <i>_x</i> Se <i>_x</i>) ₅	sub> O x sub	•>7 s /sub>
146	Reduction of dislocation density and improvement of optical quality in ZnO layers by MgO-buffer annealing. Current Applied Physics, 2004, 4, 637-639.	1.1	7
147	Structural investigation of nitrided c-sapphire substrate by grazing incidence x-ray diffraction and transmission electron microscopy. Applied Physics Letters, 2007, 91, 202116.	1.5	7
148	Photoelectrochemical Solar Cells Consisting of a Pt-Modified CdS Photoanode and an Fe(ClO ₄) ₂ /Fe(ClO ₄) ₃ Redox Shuttle in a Nonaqueous Electrolyte. Journal of Physical Chemistry C, 2016, 120, 10781-10790.	1.5	7
149	Sunlightâ€Driven Production of Methylcyclohexane from Water and Toluene Using ZnSe : Cu(In,Ga)Se ₂ â€Based Photocathode. ChemCatChem, 2019, 11, 4266-4271.	1.8	7
150	Enhanced Photoelectrochemical Water Oxidation from CdTe Photoanodes Annealed with CdCl 2. Angewandte Chemie, 2020, 132, 13904-13910.	1.6	7
151	Stress dependence on N/Ga ratio in GaN epitaxial films grown on ZnO substrates. Current Applied Physics, 2004, 4, 685-687.	1.1	6
152	Lateral arrays of vertical ZnO nanowalls on a periodically polarity-inverted ZnO template. Nanotechnology, 2009, 20, 235304.	1.3	6
153	ZnTe-based photocathode for hydrogen evolution from water under sunlight. APL Materials, 2020, 8, 041101.	2.2	6
154	A surface sensitive optical method for the evaluation of processed ZnO: exploitation of LO phonon interaction. Current Applied Physics, 2004, 4, 633-636.	1.1	5
155	The effect of growth temperature on nitrogen incorporation into ZnO film grown on Al2O3 substrate. Journal of Crystal Growth, 2009, 311, 466-469.	0.7	5
156	Impact of lattice defects on water oxidation properties in SnNb2O6 photoanode prepared by pulsed-laser deposition method. Journal of Applied Physics, 2019, 126, .	1.1	5
157	Fabrication of periodically polarity-inverted ZnO films. Journal of Vacuum Science & Technology B, 2008, 26, 1120.	1.3	4
158	Composite of Rh y Cr2â^'y O3/(Ga1â^'x Zn x)(N1â^'x O x) Photocatalysts with Hydrophobic Polytetrafluoroethylene (PTFE) Membranes for the Fabrication of Novel Reaction Sites for Water Vapor Splitting Under Visible Light. Catalysis Letters, 2013, 143, 150-153.	1.4	4
159	Photoelectrodes: Vertically Aligned Ta ₃ N ₅ Nanorod Arrays for Solarâ€Driven Photoelectrochemical Water Splitting (Adv. Mater. 1/2013). Advanced Materials, 2013, 25, 152-152.	11.1	4
160	A high-resolution electron microscopy study of MgxZn1–xO films grown on MgO/c-sapphire. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1042-1045.	0.8	3
161	The effect of hydrogen irradiation and annealing on the low-temperature growth of homoepitaxial ZnO layers grown on (0001) ZnO substrates by plasma-assisted molecular beam epitaxy. Applied Surface Science, 2008, 254, 3120-3124.	3.1	3
162	Photoelectrochemical Properties of Single Crystalline and Polycrystalline GaN Grown by the Na-flux Method. Electrochemistry, 2010, 78, 136-139.	0.6	3

#	Article	IF	CITATIONS
163	A Photoelectrochemical Solar Cell Consisting of a Cadmium Sulfide Photoanode and a Ruthenium–2,2′â€Bipyridine Redox Shuttle in a Nonâ€aqueous Electrolyte. Angewandte Chemie, 2015, 127 7988-7992.	, 1.6	3
164	Optimal Metal Oxide Deposition Conditions and Properties for the Enhancement of Hydrogen Evolution over Particulate La ₅ Ti ₂ Cu _{1â^'<i>x</i>} Ag _{<i>x</i>} S ₅ O _{7Photocathodes. ChemPhotoChem, 2018, 2, 234-239.}	ub> ^{1,5}	3
165	In Situ Photoluminescence Analysis of GaN Photoanode during Water Oxidation. Journal of Physical Chemistry C, 2021, 125, 10493-10499.	1.5	3
166	ZnO Nanorods and Periodically-Polarity-Inverted Structures for Photonic Devices. Journal of the Korean Physical Society, 2008, 53, 406-411.	0.3	3
167	Second harmonic generation of pseudo mode-locked multi ten milliwatt picosecond Ti:sapphire laser. Science and Technology of Advanced Materials, 2004, 5, 593-596.	2.8	2
168	Fabrication of one-dimensional and two-dimensional periodically polarity inverted ZnO structures using the patterned CrN buffer layers. Journal of Vacuum Science & Technology B, 2009, 27, 1658.	1.3	2
169	Fabrication of periodically polarity-inverted ZnO structures on (0001) Al2O3. Thin Solid Films, 2010, 518, 4117-4120.	0.8	2
170	Anisotropic properties of periodically polarity-inverted zinc oxide structures. Journal of Applied Physics, 2010, 107, 123519.	1.1	2
171	The thermal treatment effects of CrN buffer layer on crystal quality of Zn-polar ZnO films. Thin Solid Films, 2011, 519, 3417-3420.	0.8	2
172	Efficient hydrogen evolution from water over thin film photocathode composed of solid solutions between ZnSe and Cu(In, Ga)Se2 with composition gradient. Applied Physics Letters, 2021, 119, .	1.5	2
173	Improvement of Photoelectrochemical Properties by Surface Modification with Iron Oxide on p-Type Si Electrodes for Hydrogen Evolution from Water. Japanese Journal of Applied Physics, 2011, 50, 085702.	0.8	2
174	Structural characterization of MgO/c-Al2O3 interfaces. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1715-1718.	0.8	1
175	Characterization of free-standing GaN substrates prepared by self lift-off. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2617-2620.	0.8	1
176	Improvement of Photoelectrochemical Reaction for Hydrogen Generation from Water using N-face GaN. Materials Research Society Symposia Proceedings, 2009, 1202, 1.	0.1	1
177	Improvement of Photoelectrochemical Properties by Surface Modification with Iron Oxide on p-Type Si Electrodes for Hydrogen Evolution from Water. Japanese Journal of Applied Physics, 2011, 50, 085702.	0.8	1
178	(Invited) Photoelectrochemical Systems for Sunlight Driven Fuel Production. ECS Meeting Abstracts, 2016, , .	0.0	1
179	(Invited) CdTe Based Photocathodes and Photoanodes for Photoelectrochemical Water Splitting Under Sunlight. ECS Meeting Abstracts, 2018, , .	0.0	1
180	ZnO/GaN Heteroepitaxy. Materials Research Society Symposia Proceedings, 2004, 829, 54.	0.1	0

Тѕитоми Міледіяні

#	Article	IF	CITATIONS
181	Low-Temperature Growth of A1N thin films on ZnO templates prepared on Ak <inf>2</inf> O <inf>3</inf> substrates. , 2006, , .		0
182	The Growth of ZnO on CrN Buffer Layer Using Surface Phase Control by Plasma Assisted Molecular-beam Epitaxy. Materials Research Society Symposia Proceedings, 2006, 957, 1.	0.1	0
183	Effects of Surface Treatments on Optical Properties of GaN. Materials Research Society Symposia Proceedings, 2006, 955, 1.	0.1	0
184	Hydrogen-assisted molecular-beam epitaxy of ZnO layers on Zn-polar ZnO. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1685-1688.	0.8	0
185	High quality p-type ZnO film grown on ZnO substrate by nitrogen and tellurium co-doping. Materials Research Society Symposia Proceedings, 2009, 1201, 136.	0.1	0
186	Crystal polarity control of ZnO films and nonlinear optical response. Materials Research Society Symposia Proceedings, 2009, 1201, 13.	0.1	0
187	Effect of anion-to-cation supplying ratio on the surface morphology of AlN films grown on ZnO substrates at low temperature. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 61-64.	0.9	0
188	Stress field analysis around vortex in elastic layer of viscoelastic turbulent channel flow. Journal of Physics: Conference Series, 2014, 530, 012059.	0.3	0
189	Frontispiece: Recent Progress in the Surface Modification of Photoelectrodes toward Efficient and Stable Overall Water Splitting. Chemistry - A European Journal, 2018, 24, .	1.7	0
190	Water Splitting: Stable Hydrogen Production from Water on an NIR-Responsive Photocathode under Harsh Conditions (Small Methods 5/2018). Small Methods, 2018, 2, 1800029.	4.6	0
191	Investigation on Nitridation Process of SrNbO2N Particles from SrNbO3 for Photoelectrochemical Water Splitting. ECS Meeting Abstracts, 2017, , .	0.0	0
192	(Invited) Hydrogen and Methylcyclohexane Production By Solar Water Splitting Using Photoelectrochemical Cells. ECS Meeting Abstracts, 2017, , .	0.0	0
193	(Invited) Direct Synthesis of Hydrogen Carrier Using Membrane Integrated-Photocatalyst Sheets Under Sunlight. ECS Meeting Abstracts, 2019, , .	0.0	0
194	Photoelectrochemical Properties of Surface-Modified ZnSe:Cu(In,Ga)Se2 Photocathodes for Efficient and Durable Overall Water Splitting. ECS Meeting Abstracts, 2018, MA2018-01, 1922-1922.	0.0	0
195	Ambient Sensitive Charge Transfer from GaN to Pt during a Photocatalytic Reaction. Journal of Physical Chemistry Letters, 2022, 13, 3978-3982.	2.1	0
196	(Invited) (Photo)Electrochemical Cells for Hydrogen Production and Carbon Dioxide Utilization. ECS Meeting Abstracts, 2022, MA2022-01, 1599-1599.	0.0	0