
Bashar W Badran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2096354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Comprehensive Review of Vagus Nerve Stimulation for Depression. Neuromodulation, 2022, 25, 309-315.	0.8	52
2	A visual and narrative timeline of US FDA milestones for Transcranial Magnetic Stimulation (TMS) devices. Brain Stimulation, 2022, 15, 73-75.	1.6	53
3	Ruminative reflection is associated with anticorrelations between the orbitofrontal cortex and the default mode network in depression: implications for repetitive transcranial magnetic stimulation. Brain Imaging and Behavior, 2022, 16, 1186-1195.	2.1	7
4	Sonication of the Anterior Thalamus With MRI-Guided Transcranial Focused Ultrasound (tFUS) Alters Pain Thresholds in Healthy Adults: A Double-Blind, Sham-Controlled Study. Focus (American) Tj ETQqO 0 0 rgBT /C	Dv erk ock 1	0 If 50 617 ⁻
5	Neurophysiologic Effects of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS) via Electrical Stimulation of the Tragus: A Concurrent taVNS/fMRI Study and Review. Focus (American Psychiatric) Tj ETQq1 1 (0. 78 &1314	rg&T /Overlo
6	The Future Is Noninvasive: A Brief Review of the Evolution and Clinical Utility of Vagus Nerve Stimulation. Focus (American Psychiatric Publishing), 2022, 20, 3-7.	0.8	1
7	Electrical stimulation of the trigeminal nerve improves olfaction in healthy individuals: A randomized, double-blind, sham-controlled trial. Brain Stimulation, 2022, 15, 761-768.	1.6	6
8	From adults to pediatrics: A review noninvasive brain stimulation (NIBS) to facilitate recovery from brain injury. Progress in Brain Research, 2021, 264, 287-322.	1.4	9
9	Transcutaneous Auricular Neurostimulation (tAN): A Novel Adjuvant Treatment in Neonatal Opioid Withdrawal Syndrome. Frontiers in Human Neuroscience, 2021, 15, 648556.	2.0	8
10	Targeting location relates to treatment response in active but not sham rTMS stimulation. Brain Stimulation, 2021, 14, 703-709.	1.6	26
11	A Review of Parameter Settings for Invasive and Non-invasive Vagus Nerve Stimulation (VNS) Applied in Neurological and Psychiatric Disorders. Frontiers in Neuroscience, 2021, 15, 709436.	2.8	42
12	High-resolution computational modeling of the current flow in the outer ear during transcutaneous auricular Vagus Nerve Stimulation (taVNS). Brain Stimulation, 2021, 14, 1419-1430.	1.6	12
13	Imaged-guided Transcranial focused ultrasound on the right thalamus modulates ascending pain pathway to somatosensory cortex in healthy participants. Brain Stimulation, 2021, 14, 1638.	1.6	1
14	Diffusional kurtosis imaging reveals taVNS facilitates microstructural changes in the developing neonatal brain. Brain Stimulation, 2021, 14, 1665-1666.	1.6	0
15	Is transcranial focused ultrasound stimulation (tFUS) the next holy grail for treating depression?. Brain Stimulation, 2021, 14, 1746.	1.6	0
16	Predicting response to transcutaneous auricular vagus nerve stimulation (taVNS) paired with oromotor feeding in neonates: CNS metabolite biomarkers by MR spectroscopy (MRS). Brain Stimulation, 2021, 14, 1664-1665.	1.6	0
17	At-home telemedicine controlled taVNS twice daily for 4 weeks reduces long COVID symptoms of anxiety and fatigue. Brain Stimulation, 2021, 14, 1703.	1.6	1
18	Probing Cognitive Control Neurocircuitry: A Concurrent TMS-fMRI Investigation. Brain Stimulation, 2021, 14, 1623.	1.6	0

Bashar W Badran

#	Article	IF	CITATIONS
19	Parametric modulation of the heart and brain using transcutaneous auricular vagus nerve stimulation (taVNS). Brain Stimulation, 2021, 14, 1748-1749.	1.6	0
20	Increasing the number of daily stimulation sessions administered during taVNS-paired bottle feeding speeds response time in newborns with feeding difficulty. Brain Stimulation, 2021, 14, 1703.	1.6	0
21	At-Home Telemedicine Controlled taVNS Twice Daily for 4 weeks is Feasible and Safe for Long COVID Symptoms Brain Stimulation, 2021, 14, 1702-1703.	1.6	0
22	Understanding the anatomical substrates and neurophysiological effects of transcutaneous auricular vagus nerve stimulation. Brain Stimulation, 2021, 14, 1726.	1.6	0
23	Enhanced tES and tDCS computational models by meninges emulation. Journal of Neural Engineering, 2020, 17, 016027.	3.5	37
24	Brain stimulation in zero gravity: transcranial magnetic stimulation (TMS) motor threshold decreases during zero gravity induced by parabolic flight. Npj Microgravity, 2020, 6, 26.	3.7	7
25	Update on the Use of Transcranial Electrical Brain Stimulation to Manage Acute and Chronic COVID-19 Symptoms. Frontiers in Human Neuroscience, 2020, 14, 595567.	2.0	18
26	Sonication of the anterior thalamus with MRI-Guided transcranial focused ultrasound (tFUS) alters pain thresholds in healthy adults: A double-blind, sham-controlled study. Brain Stimulation, 2020, 13, 1805-1812.	1.6	72
27	Synchronized cervical VNS with accelerated theta burst TMS for treatment resistant depression. Brain Stimulation, 2020, 13, 1449-1450.	1.6	7
28	Applications of Non-invasive Neuromodulation for the Management of Disorders Related to COVID-19. Frontiers in Neurology, 2020, 11, 573718.	2.4	40
29	Two weeks of image-guided left dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation improves smoking cessation: A double-blind, sham-controlled, randomized clinical trial. Brain Stimulation, 2020, 13, 1271-1279.	1.6	40
30	Transcutaneous Auricular Vagus Nerve Stimulation-Paired Rehabilitation for Oromotor Feeding Problems in Newborns: An Open-Label Pilot Study. Frontiers in Human Neuroscience, 2020, 14, 77.	2.0	32
31	Electrical stimulation of cranial nerves in cognition and disease. Brain Stimulation, 2020, 13, 717-750.	1.6	82
32	Personalized TMS helmets for quick and reliable TMS administration outside of a laboratory setting. Brain Stimulation, 2020, 13, 551-553.	1.6	14
33	Transcranial electrical stimulation motor threshold can estimate individualized tDCS dosage from reverse-calculation electric-field modeling. Brain Stimulation, 2020, 13, 961-969.	1.6	59
34	Design and validation of a closed-loop, motor-activated auricular vagus nerve stimulation (MAAVNS) system for neurorehabilitation. Brain Stimulation, 2020, 13, 800-803.	1.6	19
35	International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020). Frontiers in Human Neuroscience, 2020, 14, 568051.	2.0	143
36	Can transcranial electrical stimulation motor threshold estimate individualized tDCS doses over the prefrontal cortex? Evidence from reverse-calculation electric field modeling. Brain Stimulation, 2020, 13, 1150-1152.	1.6	24

#	Article	IF	CITATIONS
37	Transcutaneous Auricular Vagus Nerve Stimulation (taVNS) Treatment: Relationship to Motor Abilities and Neuroimaging in At-Risk Infants. American Journal of Occupational Therapy, 2020, 74, 7411520479p1-7411520479p1.	0.3	2
38	Transcranial electrical stimulation nomenclature. Brain Stimulation, 2019, 12, 1349-1366.	1.6	84
39	Laboratory Administration of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS): Technique, Targeting, and Considerations. Journal of Visualized Experiments, 2019, , .	0.3	47
40	Are EMG and visual observation comparable in determining resting motor threshold? A reexamination after twenty years. Brain Stimulation, 2019, 12, 364-366.	1.6	15
41	Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimulation, 2018, 11, 699-708.	1.6	126
42	Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: A concurrent taVNS/fMRI study and review. Brain Stimulation, 2018, 11, 492-500.	1.6	216
43	Limited output transcranial electrical stimulation (LOTES-2017): Engineering principles, regulatory statutes, and industry standards for wellness, over-the-counter, or prescription devices with low risk. Brain Stimulation, 2018, 11, 134-157.	1.6	46
44	Increased Excitability Induced in the Primary Motor Cortex by Transcranial Ultrasound Stimulation. Frontiers in Neurology, 2018, 9, 1007.	2.4	65
45	F26. Probing Cognitive Control Neurocircuits: A Concurrent TMS-fMRI Investigation of State Dependence. Biological Psychiatry, 2018, 83, S247.	1.3	Ο
46	Transcutaneous auricular vagus nerve stimulation (taVNS) for improving oromotor function in newborns. Brain Stimulation, 2018, 11, 1198-1200.	1.6	24
47	Tragus or cymba conchae? Investigating the anatomical foundation of transcutaneous auricular vagus nerve stimulation (taVNS). Brain Stimulation, 2018, 11, 947-948.	1.6	77
48	Repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex reduces resting-state insula activity and modulates functional connectivity of the orbitofrontal cortex in cigarette smokers. Drug and Alcohol Dependence, 2017, 174, 98-105.	3.2	66
49	A Randomized Controlled Pilot Trial Suggesting That Cathodal Bi-Frontal Transcranial Direct Current Stimulation (tDCS) May Shorten Sleep Onset Latency, and Increase Sleep Efficiency When Applied Before An Afternoon Nap. Brain Stimulation, 2017, 10, e6.	1.6	Ο
50	Oscillating Square Wave Transcranial Direct Current Stimulation (tDCS) Delivered during Slow Wave Sleep Does Not Improve Declarative Memory More Than Sham: A Randomized Sham-Controlled Crossover Study. Brain Stimulation, 2017, 10, e8.	1.6	0
51	Transcranial magnetic stimulation of the dorsal lateral prefrontal cortex inhibits medial orbitofrontal activity in smokers. American Journal on Addictions, 2017, 26, 788-794.	1.4	30
52	E-meditation: A novel paradigm using tDCS to enhance mindfulness meditation. Brain Stimulation, 2017, 10, e22.	1.6	3
53	A Double-Blind Study Exploring the Use of Transcranial Direct Current Stimulation (tDCS) to Potentially Enhance Mindfulness Meditation (E-Meditation). Brain Stimulation, 2017, 10, 152-154.	1.6	29
54	It takes time to tune. Annals of Translational Medicine, 2017, 5, 171-171.	1.7	2

#	Article	IF	CITATIONS
55	A Double-Blind, Sham-Controlled Pilot Trial of Pre-Supplementary Motor Area (Pre-SMA) 1 Hz rTMS to Treat Essential Tremor. Brain Stimulation, 2016, 9, 945-947.	1.6	19
56	The Efficacy of Daily Prefrontal Repetitive Transcranial Magnetic Stimulation (rTMS) for Burning Mouth Syndrome (BMS): A Randomized Controlled Single-blind Study. Brain Stimulation, 2016, 9, 234-242.	1.6	56
57	One Step Closer To Patient-Specific Brain Treatments: Interleaved Transcranial Magnetic Stimulation (TMS)/fMRI to Assess the fMRI BOLD Response Before and After High Frequency Repetitive TMS Treatment. Brain Stimulation, 2015, 8, 408.	1.6	0
58	Longâ€lasting analgesic effect of transcranial direct current stimulation in treatment of chronic endometriosis pain. Journal of Obstetrics and Gynaecology Research, 2015, 41, 1998-2001.	1.3	13
59	Continuous theta burst stimulation to the medial prefrontal cortex decreases frontal-striatal circuitry involved in drug craving. Brain Stimulation, 2015, 8, 360.	1.6	0
60	Daily left prefrontal repetitive transcranial magnetic stimulation for medication-resistant burning mouth syndrome. International Journal of Oral and Maxillofacial Surgery, 2015, 44, 1048-1051.	1.5	13
61	Oscillating Square Wave Transcranial Direct Current Stimulation (tDCS) Delivered During Slow Wave Sleep Does Not Improve Declarative Memory More Than Sham: A Randomized Sham Controlled Crossover Study. Brain Stimulation, 2015, 8, 528-534.	1.6	59
62	What goes up, can come down: Novel brain stimulation paradigms may attenuate craving and craving-related neural circuitry in substance dependent individuals. Brain Research, 2015, 1628, 199-209.	2.2	138
63	Integration of Cortical Brain Stimulation and Exposure andÂResponse Prevention for Obsessive-compulsive Disorder (OCD). Brain Stimulation, 2014, 7, 764-765.	1.6	9