Anthony R Ives

List of Publications by Citations

Source: https://exaly.com/author-pdf/2096037/anthony-r-ives-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

206 18,977 135 70 h-index g-index citations papers 7.14 227 21,542 7.3 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
206	Testing for phylogenetic signal in comparative data: behavioral traits are more labile. <i>Evolution;</i> International Journal of Organic Evolution, 2003 , 57, 717-45	3.8	2956
205	Stability and diversity of ecosystems. <i>Science</i> , 2007 , 317, 58-62	33.3	917
204	Using the Past to Predict the Present: Confidence Intervals for Regression Equations in Phylogenetic Comparative Methods. <i>American Naturalist</i> , 2000 , 155, 346-364	3.7	694
203	An Introduction to Phylogenetically Based Statistical Methods, with a New Method for Confidence Intervals on Ancestral Values. <i>American Zoologist</i> , 1999 , 39, 374-388		488
202	Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. <i>PLoS ONE</i> , 2012 , 7, e41010	3.7	476
201	Reptile Extinctions on Land-Bridge Islands: Life-History Attributes and Vulnerability to Extinction. <i>American Naturalist</i> , 1999 , 153, 1-25	3.7	449
200	Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystem. <i>Ecology Letters</i> , 2003 , 6, 857-865	10	404
199	ESTIMATING COMMUNITY STABILITY AND ECOLOGICAL INTERACTIONS FROM TIME-SERIES DATA. <i>Ecological Monographs</i> , 2003 , 73, 301-330	9	354
198	Mutualisms in a changing world: an evolutionary perspective. <i>Ecology Letters</i> , 2010 , 13, 1459-74	10	349
197	Within-species variation and measurement error in phylogenetic comparative methods. <i>Systematic Biology</i> , 2007 , 56, 252-70	8.4	334
196	Phylogenetic measures of biodiversity. <i>American Naturalist</i> , 2007 , 169, E68-83	3.7	327
195	Phylogenetic logistic regression for binary dependent variables. <i>Systematic Biology</i> , 2010 , 59, 9-26	8.4	295
194	A synthesis of subdisciplines: predator-prey interactions, and biodiversity and ecosystem functioning. <i>Ecology Letters</i> , 2004 , 8, 102-116	10	287
193	When natural habitat fails to enhance biological pest control Five hypotheses. <i>Biological Conservation</i> , 2016 , 204, 449-458	6.2	273
192	INTERACTIONS BETWEEN SPECIALIST AND GENERALIST NATURAL ENEMIES: PARASITOIDS, PREDATORS, AND PEA APHID BIOCONTROL. <i>Ecology</i> , 2003 , 84, 91-107	4.6	253
191	Stability and variability in competitive communities. <i>Science</i> , 1999 , 286, 542-4	33.3	243
190	GENERALIST PREDATORS DISRUPT BIOLOGICAL CONTROL BY A SPECIALIST PARASITOID. <i>Ecology</i> , 2001 , 82, 705-716	4.6	223

(1995-2003)

189	TESTING FOR PHYLOGENETIC SIGNAL IN COMPARATIVE DATA: BEHAVIORAL TRAITS ARE MORE LABILE. <i>Evolution; International Journal of Organic Evolution</i> , 2003 , 57, 717	3.8	222
188	Morphometrics of the avian small intestine compared with that of nonflying mammals: a phylogenetic approach. <i>Physiological and Biochemical Zoology</i> , 2008 , 81, 526-50	2	221
187	Measuring Resilience in Stochastic Systems. <i>Ecological Monographs</i> , 1995 , 65, 217-233	9	206
186	Food-web interactions govern the resistance of communities after non-random extinctions. <i>Nature</i> , 2004 , 429, 174-7	50.4	196
185	Aggregation and Coexistence in a Carrion Fly Community. <i>Ecological Monographs</i> , 1991 , 61, 75-94	9	195
184	Procedures for the Analysis of Comparative Data Using Phylogenetically Independent Contrasts. <i>Systematic Biology</i> , 1992 , 41, 18	8.4	193
183	Separating the determinants of phylogenetic community structure. <i>Ecology Letters</i> , 2007 , 10, 917-25	10	183
182	A polymorphism maintained by opposite patterns of parasitism and predation. <i>Nature</i> , 1997 , 388, 269-2	2752 0.4	180
181	Stability and species richness in complex communities. <i>Ecology Letters</i> , 2000 , 3, 399-411	10	175
180	Effects of species diversity on the primary productivity of ecosystems: extending our spatial and temporal scales of inference. <i>Oikos</i> , 2004 , 104, 437-450	4	172
179	Species response to environmental change: impacts of food web interactions and evolution. <i>Science</i> , 2009 , 323, 1347-50	33.3	167
178	Antipredator Behavior and the Population Dynamics of Simple Predator-Prey Systems. <i>American Naturalist</i> , 1987 , 130, 431-447	3.7	167
177	Competition within and between species in a patchy environment: Relations between microscopic and macroscopic models. <i>Journal of Theoretical Biology</i> , 1985 , 115, 65-92	2.3	147
	and macroscopic models. Southat of Theoretical biology, 1765, 175, 65-72		
176	Effects of experimental shifts in flowering phenology on plant-pollinator interactions. <i>Ecology Letters</i> , 2011 , 14, 69-74	10	144
176 175	Effects of experimental shifts in flowering phenology on plant-pollinator interactions. <i>Ecology</i>		144
	Effects of experimental shifts in flowering phenology on plant-pollinator interactions. <i>Ecology Letters</i> , 2011 , 14, 69-74 Generalized linear mixed models for phylogenetic analyses of community structure. <i>Ecological</i>	10	
175	Effects of experimental shifts in flowering phenology on plant-pollinator interactions. <i>Ecology Letters</i> , 2011 , 14, 69-74 Generalized linear mixed models for phylogenetic analyses of community structure. <i>Ecological Monographs</i> , 2011 , 81, 511-525	10	144

171	STATEBPACE MODELS LINK ELK MOVEMENT PATTERNS TO LANDSCAPE CHARACTERISTICS IN YELLOWSTONE NATIONAL PARK. <i>Ecological Monographs</i> , 2007 , 77, 285-299	9	133
170	POPULATION DYNAMICS ACROSS GEOGRAPHICAL RANGES: TIME-SERIES ANALYSES OF THREE SMALL GAME SPECIES. <i>Ecology</i> , 2003 , 84, 2654-2667	4.6	130
169	Phylogenetic analysis of trophic associations. <i>American Naturalist</i> , 2006 , 168, E1-14	3.7	121
168	For testing the significance of regression coefficients, go ahead and log-transform count data. <i>Methods in Ecology and Evolution</i> , 2015 , 6, 828-835	7.7	117
167	Consequences of recurrent gene flow from crops to wild relatives. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2003 , 270, 1879-86	4.4	117
166	Abrupt Change in Ecological Systems: Inference and Diagnosis. <i>Trends in Ecology and Evolution</i> , 2018 , 33, 513-526	10.9	113
165	Accelerate Synthesis in Ecology and Environmental Sciences. <i>BioScience</i> , 2009 , 59, 699-701	5.7	110
164	Reciprocal effects of host plant and natural enemy diversity on herbivore suppression: an empirical study of a model tritrophic system. <i>Oikos</i> , 2005 , 108, 275-282	4	99
163	Species Compensation and Complementarity in Ecosystem Function 1995 , 224-239		98
162	COMPENSATORY DYNAMICS IN PLANKTONIC COMMUNITY RESPONSES TO pH PERTURBATIONS. <i>Ecology</i> , 2000 , 81, 387-398	4.6	97
161	Three points to consider when choosing a LM or GLM test for count data. <i>Methods in Ecology and Evolution</i> , 2016 , 7, 882-890	7.7	96
160	pez: phylogenetics for the environmental sciences. <i>Bioinformatics</i> , 2015 , 31, 2888-90	7.2	94
159	Effects of species diversity on community biomass production change over the course of succession. <i>Ecology</i> , 2007 , 88, 929-39	4.6	93
158	Statistics for correlated data: phylogenies, space, and time 2006 , 16, 20-32		92
157	General relationships between species diversity and stability in competitive systems. <i>American Naturalist</i> , 2002 , 159, 388-95	3.7	92
156	Biodiversity as both a cause and consequence of resource availability: a study of reciprocal causality in a predator-prey system. <i>Journal of Animal Ecology</i> , 2006 , 75, 497-505	4.7	91
155	DIVERSITY B RODUCTIVITY RELATIONSHIPS IN STREAMS VARY AS A FUNCTION OF THE NATURAL DISTURBANCE REGIME. <i>Ecology</i> , 2005 , 86, 716-726	4.6	89
154	An assembly and alignment-free method of phylogeny reconstruction from next-generation sequencing data. <i>BMC Genomics</i> , 2015 , 16, 522	4.5	87

153	DYNAMICS OF THE RELATIONSHIP BETWEEN A GENERALIST PREDATOR AND SLUGS OVER FIVE YEARS. <i>Ecology</i> , 2002 , 83, 137-147	4.6	87
152	Breakdown in postmating isolation and the collapse of a species pair through hybridization. <i>American Naturalist</i> , 2010 , 175, 11-26	3.7	82
151	High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn. <i>Nature</i> , 2008 , 452, 84-7	50.4	80
150	Evolution of resistance to Bt crops: directional selection in structured environments. <i>Ecology Letters</i> , 2002 , 5, 792-801	10	80
149	Food web dynamics in correlated and autocorrelated environments. <i>Theoretical Population Biology</i> , 2003 , 64, 369-84	1.2	80
148	Fish predation and trapping for rusty crayfish (Orconectes rusticus) control: a whole-lake experiment. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2006 , 63, 383-393	2.4	79
147	Metapopulation Dynamics and Pest Control in Agricultural Systems. <i>American Naturalist</i> , 1997 , 149, 220)- <u>3.</u> 46	78
146	The role of vision and color in the close proximity foraging behavior of four coccinellid species. <i>Oecologia</i> , 1998 , 115, 287-292	2.9	78
145	Phylogenetic metrics of community similarity. <i>American Naturalist</i> , 2010 , 176, E128-42	3.7	76
144	The evolution of resistance to two-toxin pyramid transgenic crops 2011 , 21, 503-15		74
143	COMPENSATORY DYNAMICS IN ZOOPLANKTON COMMUNITY RESPONSES TO ACIDIFICATION: MEASUREMENT AND MECHANISMS 2001 , 11, 1060-1072		74
142	R\$^{2}\$s for Correlated Data: Phylogenetic Models, LMMs, and GLMMs. <i>Systematic Biology</i> , 2019 , 68, 234-251	8.4	74
141	Analysis of ecological time series with ARMA(p,q) models. <i>Ecology</i> , 2010 , 91, 858-71	4.6	73
140	Variability and Parasitoid Foraging Efficiency: A Case Study of Pea Aphids and Aphidius ervi. <i>American Naturalist</i> , 1999 , 154, 652-673	3.7	73
139	Covariance, coexistence and the population dynamics of two competitors using a patchy resource. Journal of Theoretical Biology, 1988 , 133, 345-361	2.3	72
138	Coleomegilla maculata (Coleoptera: Coccinellidae) predation on pea aphids promoted by proximity to dandelions. <i>Oecologia</i> , 2000 , 125, 543-548	2.9	70
137	COMMUNITY INTERACTION WEBS AND ZOOPLANKTON RESPONSES TO PLANKTIVORY MANIPULATIONS. <i>Ecology</i> , 1999 , 80, 1405-1421	4.6	70
136	Continuous-time models of host-parasitoid interactions. <i>American Naturalist</i> , 1992 , 140, 1-29	3.7	69

135	Effectiveness of three turacos as seed dispersers in a tropical montane forest. <i>Oecologia</i> , 1997 , 112, 94-103	2.9	67
134	The Optimal Clutch Size of Insects When Many Females Oviposit Per Patch. <i>American Naturalist</i> , 1989 , 133, 671-687	3.7	67
133	Niche saturation reveals resource partitioning among consumers. <i>Ecology Letters</i> , 2010 , 13, 338-48	10	64
132	The synergistic effects of stochasticity and dispersal on population densities. <i>American Naturalist</i> , 2004 , 163, 375-87	3.7	64
131	Pollinator effectiveness varies with experimental shifts in flowering time. <i>Ecology</i> , 2012 , 93, 803-14	4.6	63
130	The effects of an exotic fish invasion on the prey communities of two lakes. <i>Journal of Animal Ecology</i> , 2003 , 72, 331-342	4.7	63
129	The effect of parasitoid host-size preference on host population growth rates: an example of Aphidius colemani and Aphis glycines. <i>Ecological Entomology</i> , 2003 , 28, 542-550	2.1	62
128	Phylogenetic trait-based analyses of ecological networks. <i>Ecology</i> , 2013 , 94, 2321-33	4.6	61
127	Climate change and elevated extinction rates of reptiles from Mediterranean Islands. <i>American Naturalist</i> , 2011 , 177, 119-29	3.7	61
126	Alternative stable states explain unpredictable biological control of Salvinia molesta in Kakadu. <i>Nature</i> , 2011 , 470, 86-9	50.4	61
125	Temporal coexistence mechanisms contribute to the latitudinal gradient in forest diversity. <i>Nature</i> , 2017 , 550, 105-108	50.4	58
124	Can Sublethal Parasitism Destabilize Predator-Prey Population Dynamics? A Model of Snowshoe Hares, Predators and Parasites. <i>Journal of Animal Ecology</i> , 1997 , 66, 265	4.7	57
123	Density-Dependent and Density-Independent Parasitoid Aggregation in Model Host-Parasitoid Systems. <i>American Naturalist</i> , 1992 , 140, 912-937	3.7	56
122	Phylogenetic Regression for Binary Dependent Variables 2014 , 231-261		55
121	Direct and indirect effects of warming on aphids, their predators, and ant mutualists. <i>Ecology</i> , 2014 , 95, 1479-84	4.6	55
120	Macroevolution of plant defenses against herbivores in the evening primroses. <i>New Phytologist</i> , 2014 , 203, 267-79	9.8	53
119	Coevolution and the effects of climate change on interacting species. <i>PLoS Biology</i> , 2013 , 11, e1001685	9.7	50
118	Rapid evolution, seasonality, and the termination of parasite epidemics. <i>Ecology</i> , 2009 , 90, 1441-8	4.6	50

(2001-2006)

117	Sexual size dimorphism in a Drosophila clade, the D. obscura group. Zoology, 2006, 109, 318-30	1.7	49
116	Population genetics of transgene containment. <i>Ecology Letters</i> , 2004 , 7, 213-220	10	49
115	Coexistence in tropical forests through asynchronous variation in annual seed production. <i>Ecology</i> , 2012 , 93, 2073-84	4.6	48
114	Evidence for a trade-off between host-range breadth and host-use efficiency in aphid parasitoids. <i>American Naturalist</i> , 2011 , 177, 389-95	3.7	46
113	COMPETITION BETWEEN NATIVE AND INTRODUCED PARASITOIDS OF APHIDS: NONTARGET EFFECTS AND BIOLOGICAL CONTROL. <i>Ecology</i> , 2002 , 83, 2745-2757	4.6	46
112	Weak population regulation in ecological time series. <i>Ecology Letters</i> , 2010 , 13, 21-31	10	45
111	Species interactions and a chain of indirect effects driven by reduced precipitation. <i>Ecology</i> , 2014 , 95, 486-94	4.6	44
110	Pea aphid dropping behavior diminishes foraging efficiency of a predatory ladybeetle. <i>Entomologia Experimentalis Et Applicata</i> , 2008 , 127, 118-124	2.1	44
109	Can natural enemies enforce geographical range limits?. <i>Ecography</i> , 1999 , 22, 268-276	6.5	44
108	Measuring aggregation of parasites at different host population levels. <i>Parasitology</i> , 1996 , 112, 581-58	72.7	44
107	Functional traits and community composition: A comparison among community-weighted means, weighted correlations, and multilevel models. <i>Methods in Ecology and Evolution</i> , 2019 , 10, 415-425	7.7	43
106	The potential for hyperparasitism to compromise biological control: Why donEhyperparasitoids drive their primary parasitoid hosts extinct?. <i>Biological Control</i> , 2011 , 58, 167-173	3.8	42
105	Detecting dynamical changes in nonlinear time series using locally linear state-space models. <i>Ecosphere</i> , 2012 , 3, art58	3.1	41
104	Phylogenetic diversity∄rea curves. <i>Ecology</i> , 2012 , 93, S31-S43	4.6	40
103	Intraguild predation on the parasitoid Aphidius ervi by the generalist predator Harmonia axyridis: the threat and its avoidance. <i>Entomologia Experimentalis Et Applicata</i> , 2011 , 138, 193-201	2.1	39
102	Learning by the parasitoid wasp, Aphidius ervi (Hymenoptera: Braconidae), alters individual fixed preferences for pea aphid color morphs. <i>Oecologia</i> , 2006 , 150, 172-9	2.9	39
101	ConsumerEesource interactions and cyclic population dynamics of Tanytarsus gracilentus (Diptera: Chironomidae). <i>Journal of Animal Ecology</i> , 2002 , 71, 832-845	4.7	38
	BIOLOGICAL CONTROL IN DISTURBED AGRICULTURAL SYSTEMS AND THE RAPID RECOVERY OF		

99	rr2: An R package to calculate \$R^2\$s for regression models. <i>Journal of Open Source Software</i> , 2018 , 3, 1028	5.2	37
98	Seeing the forest and the trees: multilevel models reveal both species and community patterns. <i>Ecosphere</i> , 2012 , 3, art79	3.1	36
97	Temporal, spatial, and between-host comparisons of patterns of parasitism in lake zooplankton. <i>Ecology</i> , 2010 , 91, 3322-31	4.6	34
96	Combined effects of night warming and light pollution on predator-prey interactions. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2017 , 284,	4.4	33
95	Periodic Mortality Events in Predator-Prey Systems. <i>Ecology</i> , 2000 , 81, 3330	4.6	33
94	Climate change causes functionally colder winters for snow cover-dependent organisms. <i>Nature Climate Change</i> , 2019 , 9, 886-893	21.4	32
93	Are rapid transitions between invasive and native species caused by alternative stable states, and does it matter?. <i>Ecology</i> , 2013 , 94, 2207-19	4.6	32
92	Local Explanations of Landscape Patterns: Can Analytical Approaches Approximate Simulation Models of Spatial Processes?. <i>Ecosystems</i> , 1998 , 1, 35-51	3.9	32
91	ECOLOGICAL HISTORY AFFECTS ZOOPLANKTON COMMUNITY RESPONSES TO ACIDIFICATION. <i>Ecology</i> , 2001 , 82, 2984-3000	4.6	32
90	Tree-to-tree variation in seed size and its consequences for seed dispersal versus predation by rodents. <i>Oecologia</i> , 2017 , 183, 751-762	2.9	31
89	Long-term disease dynamics in lakes: causes and consequences of chytrid infections in Daphnia populations. <i>Ecology</i> , 2009 , 90, 132-44	4.6	31
88	SPATIAL VARIATION IN ABUNDANCE CREATED BY STOCHASTIC TEMPORAL VARIATION. <i>Ecology</i> , 1997 , 78, 1907-1913	4.6	31
87	Scale-dependent indirect interactions between two prey species through a shared predator. <i>Oikos</i> , 2003 , 102, 505-514	4	31
86	COMPLEX DYNAMICS IN STOCHASTIC TRITROPHIC MODELS. <i>Ecology</i> , 1998 , 79, 1039-1052	4.6	30
85	Improving the mapping of crop types in the Midwestern U.S. by fusing Landsat and MODIS satellite data. <i>International Journal of Applied Earth Observation and Geoinformation</i> , 2017 , 58, 1-11	7.3	29
84	The statistical need to include phylogeny in trait-based analyses of community composition. <i>Methods in Ecology and Evolution</i> , 2017 , 8, 1192-1199	7.7	28
83	The collapse of cycles in the dynamics of North American grouse populations. <i>Ecology Letters</i> , 2004 , 7, 1135-1142	10	28
82	Spatial Heterogeneity and Host-Parasitoid Population Dynamics: Do We Need to Study Behavior?. <i>Oikos</i> , 1995 , 74, 366	4	28

(2005-2019)

81	Inbreeding reduces long-term growth of Alpine ibex populations. <i>Nature Ecology and Evolution</i> , 2019 , 3, 1359-1364	12.3	26	
80	Bottle or Big-Scale Studies: How do we do Ecology?. <i>Ecology</i> , 1996 , 77, 681-685	4.6	26	
79	Temperature effects on long-term population dynamics in a parasitoidflost system. <i>Ecological Monographs</i> , 2014 , 84, 457-476	9	25	
78	New multivariate tests for phylogenetic signal and trait correlations applied to ecophysiological phenotypes of nine Manglietia species. <i>Functional Ecology</i> , 2009 , 23, 1059-1069	5.6	25	
77	Environmental forcing and high amplitude fluctuations in the population dynamics of the tropical butterfly Acraea acerata (Lepidoptera: Nymphalidae). <i>Journal of Animal Ecology</i> , 2001 , 70, 1032-1045	4.7	25	
76	Can functional traits account for phylogenetic signal in community composition?. <i>New Phytologist</i> , 2017 , 214, 607-618	9.8	24	
75	Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces. <i>Ecology</i> , 2007 , 88, 1513-24	4.6	24	
74	Evolution of Insect Resistance to Bacillus thuringiensis-Transformed Plants. <i>Science</i> , 1996 , 273, 1412-14	4133 .3	24	
73	Quantitative Bioscience for the 21st Century. <i>BioScience</i> , 2005 , 55, 511	5.7	23	
72	phyr: An r package for phylogenetic species-distribution modelling in ecological communities. <i>Methods in Ecology and Evolution</i> , 2020 , 11, 1455-1463	7.7	22	
71	Positive feedback between chironomids and algae creates net mutualism between benthic primary consumers and producers. <i>Ecology</i> , 2017 , 98, 447-455	4.6	21	
70	Contamination and management of resistance evolution to high-dose transgenic insecticidal crops. <i>Theoretical Ecology</i> , 2012 , 5, 195-209	1.6	21	
69	Aggregation and the coexistence of competing parasitoid species. <i>Theoretical Population Biology</i> , 1997 , 52, 167-78	1.2	21	
68	Extreme events in lake ecosystem time series. Limnology and Oceanography Letters, 2017, 2, 63-69	7.9	20	
67	Hyperparasitoid aggregation in response to variation in Aphidius ervi host density at three spatial scales. <i>Ecological Entomology</i> , 1996 , 21, 249-258	2.1	20	
66	Presence of an unsuitable host diminishes the competitive superiority of an insect parasitoid: a distraction effect. <i>Population Ecology</i> , 2007 , 49, 347-355	2.1	19	
65	EVOLUTION OF PERIODICITY IN PERIODICAL CICADAS. <i>Ecology</i> , 2005 , 86, 3200-3211	4.6	19	
64	Testing vitamin B as a home remedy against mosquitoes. <i>Journal of the American Mosquito Control Association</i> , 2005 , 21, 213-7	0.9	18	

63	ESTIMATING FLUCTUATING VITAL RATES FROM TIME-SERIES DATA: A CASE STUDY OF APHID BIOCONTROL. <i>Ecology</i> , 2005 , 86, 740-752	4.6	18
62	Stochasticity in invertebrate clutch-size models. <i>Theoretical Population Biology</i> , 1988 , 33, 79-101	1.2	18
61	Spatio-Temporal Variation in Landscape Composition May Speed Resistance Evolution of Pests to Bt Crops. <i>PLoS ONE</i> , 2017 , 12, e0169167	3.7	18
60	Inferring Host-Parasitoid Stability from Patterns of Parasitism among Patches. <i>American Naturalist</i> , 1999 , 154, 489-496	3.7	17
59	Nest Placement Relative to Food and Its Influence on the Evolution of Avian Coloniality. <i>American Naturalist</i> , 1992 , 139, 205-217	3.7	17
58	Behavioral flexibility and the evolution of primate social states. <i>PLoS ONE</i> , 2014 , 9, e114099	3.7	16
57	Unexpected demography in the recovery of an endangered primate population. PLoS ONE, 2012, 7, e44	497	16
56	Spatially aggregated parasitism on pea aphids, Acyrthosiphon pisum, caused by random foraging behavior of the parasitoid Aphidius ervi. <i>Oikos</i> , 2000 , 91, 66-76	4	16
55	Single-leaf resolution of the temporal population dynamics of Aureobasidium pullulans on apple leaves. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 4892-900	4.8	15
54	Ecology. Inbreeding and metapopulations. <i>Science</i> , 2002 , 295, 454-5	33.3	15
53	Spatial patterns reveal strong abiotic and biotic drivers of zooplankton community composition in Lake MWatn, Iceland. <i>Ecosphere</i> , 2015 , 6, art105	3.1	14
52	GENERALIST PREDATORS DISRUPT BIOLOGICAL CONTROL BY A SPECIALIST PARASITOID 2001 , 82, 705		14
51	Characterizing global patterns of frozen ground with and without snow cover using microwave and MODIS satellite data products. <i>Remote Sensing of Environment</i> , 2017 , 191, 168-178	13.2	13
50	Wildlife population changes across Eastern Europe after the collapse of socialism. <i>Frontiers in Ecology and the Environment</i> , 2018 , 16, 77-81	5.5	13
49	Density dependence vs. independence, and irregular population dynamics of a swallow-wort fruit fly. <i>Ecology</i> , 2007 , 88, 1466-75	4.6	13
48	Measuring Competition in a Spatially Heterogeneous Environment. <i>American Naturalist</i> , 1995 , 146, 911	-9376	12
47	Identifying consumer-resource population dynamics using paleoecological data. <i>Ecology</i> , 2016 , 97, 361-	74 .6	12
46	The Failure of a Parasitoid to Persist with a Superabundant Host: The Importance of the Numerical Response. <i>Oikos</i> , 1996 , 75, 269	4	11

(2011-2021)

45	Estimating and explaining the spread of COVID-19 at the county level in the USA. <i>Communications Biology</i> , 2021 , 4, 60	6.7	11
44	Self-perpetuating ecological-evolutionary dynamics in an agricultural host-parasite system. <i>Nature Ecology and Evolution</i> , 2020 , 4, 702-711	12.3	10
43	Response of coccinellid larvae to conspecific and heterospecific larval tracks: a mechanism that reduces cannibalism and intraguild predation. <i>Environmental Entomology</i> , 2011 , 40, 103-10	2.1	10
42	Environmental variation in ecological communities and inferences from single-species data. <i>Ecology</i> , 2009 , 90, 1268-78	4.6	10
41	Aphidius ervi (Hymenoptera: Braconidae) Increases Its Adult Size by Disrupting Host Wing Development. <i>Environmental Entomology</i> , 2004 , 33, 1523-1527	2.1	10
40	Life history and habitat explain variation among insect pest populations subject to global change. <i>Ecosphere</i> , 2018 , 9, e02274	3.1	9
39	Intrinsic and extrinsic drivers of succession: Effects of habitat age and season on an aquatic insect community. <i>Ecological Entomology</i> , 2014 , 39, 316-324	2.1	8
38	Behavior Influences Whether Intra-Guild Predation Disrupts Herbivore Suppression by Parasitoids71-91		8
37	Trade-Offs (and Constraints) in Organismal Biology <i>Physiological and Biochemical Zoology</i> , 2022 , 95, 82-112	2	8
36	Statistical inference for trends in spatiotemporal data. <i>Remote Sensing of Environment</i> , 2021 , 266, 1126	7 B 3.2	8
35	Multilevel statistical models and the analysis of experimental data. <i>Ecology</i> , 2013 , 94, 1479-86	4.6	7
34	The potential role of intrinsic processes in generating abrupt and quasi-synchronous tree declines during the Holocene. <i>Ecology</i> , 2019 , 100, e02579	4.6	6
33	Responses of orb-weaving spider aggregations to spatiotemporal variation in lake-to-land subsidies at Lake MMatn, Iceland. <i>Polar Biology</i> , 2018 , 41, 1547-1554	2	6
32	Responses of benthic algae to nutrient enrichment in a shallow lake: Linking community production, biomass, and composition. <i>Freshwater Biology</i> , 2019 , 64, 1833-1847	3.1	6
31	Spatiotemporal trends in crop yields, yield variability, and yield gaps across the USA. <i>Crop Science</i> , 2020 , 60, 2085-2101	2.4	5
30	Informative Irreproducibility and the Use of Experiments in Ecology. <i>BioScience</i> , 2018 , 68, 746-747	5.7	5
29	Spatiotemporal variation in the sign and magnitude of ecosystem engineer effects on lake ecosystem production. <i>Ecosphere</i> , 2019 , 10, e02760	3.1	5
28	Why do stigmas move in a flexistylous plant?. <i>Journal of Evolutionary Biology</i> , 2011 , 24, 497-504	2.3	5

27	PERIODIC MORTALITY EVENTS IN PREDATOR PREY SYSTEMS. Ecology, 2000, 81, 3330-3340	4.6	5
26	Early- and late-flowering guilds respond differently to landscape spatial structure. <i>Journal of Ecology</i> , 2018 , 106, 1033-1045	6	5
25	Midge-stabilized sediment drives the composition of benthic cladoceran communities in Lake Mlatn, Iceland. <i>Ecosphere</i> , 2017 , 8, e01659	3.1	4
24	Foraging efficiency and the fitness consequences of spatial marking by ladybeetle larvae. <i>Oikos</i> , 2013 , 122, 1238-1246	4	4
23	Novel pests and technologies: risk assessment in agroecosystems using simple models in the face of uncertainties. <i>Current Opinion in Environmental Sustainability</i> , 2011 , 3, 100-104	7.2	3
22	COMPENSATORY DYNAMICS IN PLANKTONIC COMMUNITY RESPONSES TO pH PERTURBATIONS 2000 , 81, 387		3
21	phyr: An R package for phylogenetic species-distribution modelling in ecological communities		3
20	State-by-State estimates of R0 at the start of COVID-19 outbreaks in the USA		3
19	Resource Gradients and the Distribution and Flowering of Butterwort, a Carnivorous Plant. <i>Annales Zoologici Fennici</i> , 2017 , 54, 163-173	0.9	2
18	The structure and stability of model ecosystems assembled in a variable environment. <i>Oikos</i> , 2006 , 114, 451-464	4	2
17	Testing parent-offspring conflicts in insect parasitoids. <i>Trends in Ecology and Evolution</i> , 1987 , 2, 231-23	3 10.9	2
16	ECOLOGICAL HISTORY AFFECTS ZOOPLANKTON COMMUNITY RESPONSES TO ACIDIFICATION 2001 , 82, 2984		2
15	R2s for Correlated Data: Phylogenetic Models, LMMs, and GLMMs		2
14	Estimating and explaining the spread of COVID-19 at the county level in the USA		2
13	Effects of light and nutrients on intraspecific competition among midges from a shallow eutrophic lake. <i>Ecological Entomology</i> , 2021 , 46, 955-963	2.1	2
12	Reconstructing phylogeny from reduced-representation genome sequencing data without assembly or alignment. <i>Molecular Ecology Resources</i> , 2018 , 18, 1482-1491	8.4	2
11	Empirically Motivated Ecological Theory1. <i>Ecology</i> , 2005 , 86, 3137-3138	4.6	1

LIST OF PUBLICATIONS

9	INTERACTIONS BETWEEN SPECIALIST AND GENERALIST NATURAL ENEMIES: PARASITOIDS, PREDATORS, AND PEA APHID BIOCONTROL 2003 , 84, 91		1
8	COMPLEX DYNAMICS IN STOCHASTIC TRITROPHIC MODELS 1998 , 79, 1039		1
7	Phylogenetic conservatism explains why plants are more likely to produce fleshy fruits in the tropics. <i>Ecology</i> , 2021 , e03555	4.6	О
6	A mathematical partitioning of the effects of habitat loss and habitat degradation on species abundance. <i>Landscape Ecology</i> , 2019 , 34, 9-15	4.3	O
5	Coevolution, diversification and alternative states in two-trophic communities. <i>Ecology Letters</i> , 2021 , 24, 269-278	10	О
4	Ecosystem engineering alters density-dependent feedbacks in an aquatic insect population. <i>Ecology</i> , 2021 , 102, e03513	4.6	O
3	Shifts in the partitioning of benthic and pelagic primary production within and across summers in Lake Mlatn, Iceland. <i>Inland Waters</i> , 2021 , 11, 13-28	2.4	О
2	Statistical tests for non-independent partitions of large autocorrelated datasets <i>MethodsX</i> , 2022 , 9, 101660	1.9	Ο

Population dynamics and species interactions62-74