Alan G Marshall

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2095709/alan-g-marshall-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

158 30,359 423 95 h-index g-index citations papers 32,620 7.21 431 5.4 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
423	Predicting the crossmodal correspondences of odors using an electronic nose <i>Heliyon</i> , 2022 , 8, e09284	· 3.6	
422	Neural correlates of texture perception during active touch Behavioural Brain Research, 2022, 113908	3.4	О
421	Lessons Learned from a Decade-Long Assessment of Asphaltenes by Ultrahigh-Resolution Mass Spectrometry and Implications for Complex Mixture Analysis. <i>Energy & Energy & Energ</i>	6 ^{4.1}	6
420	A Network-Adaptive Prediction Algorithm for Haptic Data Under Network Impairments. <i>IEEE Access</i> , 2021 , 9, 52672-52683	3.5	1
419	Tracking Elemental Composition through Hydrotreatment of an Upgraded Pyrolysis Oil Blended with a Light Gas Oil. <i>Energy & Discourt Sensor</i> 2020, 34, 16181-16186	4.1	4
418	Probing Aggregation Tendencies in Asphaltenes by Gel Permeation Chromatography. Part 1: Online Inductively Coupled Plasma Mass Spectrometry and Offline Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Coupled States</i> , 2020, 34, 8308-8315	4.1	18
4 1 7	Detailed chemical composition of an oak biocrude and its hydrotreated product determined by positive atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 2404-2410	5.8	6
416	Top-down proteomics-a near-future technique for clinical diagnosis?. <i>Annals of Translational Medicine</i> , 2020 , 8, 136	3.2	2
415	Advances in Asphaltene Petroleomics. Part 4. Compositional Trends of Solubility Subfractions Reveal that Polyfunctional Oxygen-Containing Compounds Drive Asphaltene Chemistry. <i>Energy & Energy Supply Suppl</i>	4.1	41
414	Analysis of non-conjugated steroids in water using paper spray mass spectrometry. <i>Scientific Reports</i> , 2020 , 10, 10698	4.9	8
413	Characterization of an Asphalt Binder and Photoproducts by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Reveals Abundant Water-Soluble Hydrocarbons. <i>Environmental Science & Manager Manager</i> , 2020, 54, 8830-8836	10.3	12
412	Comprehensive Compositional and Structural Comparison of Coal and Petroleum Asphaltenes Based on Extrography Fractionation Coupled with Fourier Transform Ion Cyclotron Resonance MS and MS/MS Analysis. <i>Energy & Fuels</i> , 2020 , 34, 1492-1505	4.1	19
411	Biophysical mass spectrometry for biopharmaceutical process development: focus on hydrogen/deuterium exchange 2020 , 333-374		1
410	Probing the Impact of the Knob-into-Hole Mutations on the Structure and Function of a Therapeutic Antibody. <i>Analytical Chemistry</i> , 2020 , 92, 1582-1588	7.8	2
409	Molecular Composition of Photooxidation Products Derived from Sulfur-Containing Compounds Isolated from Petroleum Samples. <i>Energy & Energy & 2020</i> , 34, 14493-14504	4.1	6
408	Molecular Characterization of Photochemically Produced Asphaltenes via Photooxidation of Deasphalted Crude Oils. <i>Energy & Deasphalted Crude Oils</i> .	4.1	12
407	Probing Aggregation Tendencies in Asphaltenes by Gel Permeation Chromatography. Part 2: Online Detection by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Inductively Coupled Plasma Mass Spectrometry. <i>Energy & Description</i> 2020, 34, 10915-10925	4.1	20

406	Role of Molecular Structure in the Production of Water-Soluble Species by Photo-oxidation of Petroleum. <i>Environmental Science & Environmental Science</i>	10.3	12
405	Interlaboratory Study for Characterizing Monoclonal Antibodies by Top-Down and Middle-Down Mass Spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2020 , 31, 1783-1802	3.5	32
404	A PERSONAL SCIENTIFIC HISTORY. Mass Spectrometry Reviews, 2020,	11	1
403	Molecular-Based Nano-Communication Network: A Ring Topology Nano-Bots for In-Vivo Drug Delivery Systems. <i>IEEE Access</i> , 2019 , 7, 12901-12913	3.5	2
402	Molecular-Level Characterization of Oil-Soluble Ketone/Aldehyde Photo-Oxidation Products by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Reveals Similarity Between Microcosm and Field Samples. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	25
401	Combating selective ionization in the high resolution mass spectral characterization of complex mixtures. <i>Faraday Discussions</i> , 2019 , 218, 29-51	3.6	32
400	Characterization of Ketones Formed in the Open System Corrosion Test of Naphthenic Acids by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Description</i> , 2019, 33, 4946-495	i d .1	3
399	Modulation Analysis in Macro-Molecular Communications. <i>IEEE Access</i> , 2019 , 7, 11049-11065	3.5	6
398	Diagnosis of Hemoglobinopathy and 町halassemia by 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry of Hemoglobin from Blood. <i>Clinical Chemistry</i> , 2019 , 65, 986-994	5.5	17
397	Nanostructure of Gasification Charcoal (Biochar). <i>Environmental Science & Environmental Science & Env</i>	10.3	11
396	Position-Based Control of Under-Constrained Haptics: A System for the Dexmo Glove. <i>IEEE Robotics and Automation Letters</i> , 2019 , 4, 3497-3504	4.2	2
395	Key Generation Based on Large Scale Fading. IEEE Transactions on Vehicular Technology, 2019, 68, 8222-	8226	2
394	Design of an Efficient OFDMA-Based Multi-User Key Generation Protocol. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 8842-8852	6.8	9
393	Classification of Plasma Cell Disorders by 21 Tesla Fourier Transform Ion Cyclotron Resonance Top-Down and Middle-Down MS/MS Analysis of Monoclonal Immunoglobulin Light Chains in Human Serum. <i>Analytical Chemistry</i> , 2019 , 91, 3263-3269	7.8	13
392	SDN-Based SYN ProxyA Solution to Enhance Performance of Attack Mitigation Under TCP SYN Flood. <i>Computer Journal</i> , 2019 , 62, 518-534	1.3	6
391	Mechanistic Origins of Enzyme Activation in Human Glucokinase Variants Associated with Congenital Hyperinsulinism. <i>Biochemistry</i> , 2018 , 57, 1632-1639	3.2	9
390	Middle-Down Characterization of the Cell Cycle Dependence of Histone H4 Posttranslational Modifications and Proteoforms. <i>Proteomics</i> , 2018 , 18, e1700442	4.8	20
389	Positive Ion Electrospray Ionization Suppression in Petroleum and Complex Mixtures. <i>Energy & Energy &</i>	4.1	35

388	Statistically Significant Differences in Composition of Petroleum Crude Oils Revealed by Volcano Plots Generated from Ultrahigh Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectra. <i>Energy & Discourse Sump</i> ; Fuels, 2018 , 32, 1206-1212	4.1	21
387	Linking Natural Oil Seeps from the Gulf of Mexico to Their Origin by Use of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Environmental Science & Environmental Science & Environmenta</i>	4 ^{10.3}	15
386	Security Optimization of Exposure Region-Based Beamforming With a Uniform Circular Array. <i>IEEE Transactions on Communications</i> , 2018 , 66, 2630-2641	6.9	4
385	Protein de novo sequencing by top-down and middle-down MS/MS: Limitations imposed by mass measurement accuracy and gaps in sequence coverage. <i>International Journal of Mass Spectrometry</i> , 2018 , 427, 107-113	1.9	10
384	Channel-Envelope Differencing Eliminates Secret Key Correlation: LoRa-Based Key Generation in Low Power Wide Area Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2018 , 67, 12462-12466	6.8	31
383	Spontaneous Calcium-Independent Dimerization of the Isolated First Domain of Neural Cadherin. <i>Biochemistry</i> , 2018 , 57, 6404-6415	3.2	1
382	Experimental Results on the Open-Air Transmission of Macro-Molecular Communication Using Membrane Inlet Mass Spectrometry. <i>IEEE Communications Letters</i> , 2018 , 22, 2567-2570	3.8	16
381	Analysis of Petroleum Products by Gel Permeation Chromatography Coupled Online with Inductively Coupled Plasma Mass Spectrometry and Offline with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Description</i> 22, 12198-12204	4.1	20
380	Control of Hexamerization, Assembly, and Excluded Strand Specificity for the Sulfolobus solfataricus MCM Helicase. <i>Biochemistry</i> , 2018 , 57, 5672-5682	3.2	3
379	Parameter Analysis in Macro-Scale Molecular Communications Using Advection-Diffusion. <i>IEEE Access</i> , 2018 , 6, 46706-46717	3.5	17
378	A Chemical Alphabet for Macromolecular Communications. <i>Analytical Chemistry</i> , 2018 , 90, 7739-7746	7.8	20
377	Compositional and Structural Analysis of Silica Gel Fractions from Municipal Waste Pyrolysis Oils. <i>Energy & Energy & En</i>	4.1	7
376	Design of an OFDM Physical Layer Encryption Scheme. <i>IEEE Transactions on Vehicular Technology</i> , 2017 , 66, 2114-2127	6.8	36
375	Functional Isomers in Petroleum Emulsion Interfacial Material Revealed by Ion Mobility Mass Spectrometry and Collision-Induced Dissociation. <i>Energy & Energy & Energ</i>	4.1	25
374	Defining Spatial Secrecy Outage Probability for Exposure Region-Based Beamforming. <i>IEEE Transactions on Wireless Communications</i> , 2017 , 16, 900-912	9.6	9
373	Analysis of Monoclonal Antibodies in Human Serum as a Model for Clinical Monoclonal Gammopathy by Use of 21 Tesla FT-ICR Top-Down and Middle-Down MS/MS. <i>Journal of the American Society for Mass Spectrometry</i> , 2017 , 28, 827-838	3.5	39
372	A Context-Aware Trust Framework for Resilient Distributed Cooperative Spectrum Sensing in Dynamic Settings. <i>IEEE Transactions on Vehicular Technology</i> , 2017 , 66, 9177-9191	6.8	7
371	126 264 Assigned Chemical Formulas from an Atmospheric Pressure Photoionization 9.4 T Fourier Transform Positive Ion Cyclotron Resonance Mass Spectrum. <i>Analytical Chemistry</i> , 2017 , 89, 11318-113	24 ^{.8}	34

370	Pih1p-Tah1p Puts a Lid on Hexameric AAA+ ATPases Rvb1/2p. Structure, 2017, 25, 1519-1529.e4	5.2	17
369	Method for Isolation and Detection of Ketones Formed from High-Temperature Naphthenic Acid Corrosion. <i>Energy & Description of Corrosion Energy & Description Energy & Description Of Corrosion Energy & Description Of Corrosion Energy & Description Of Corrosion Energy & Description England Energy & Description Energy & D</i>	4.1	7
368	Front-End Electron Transfer Dissociation Coupled to a 21 Tesla FT-ICR Mass Spectrometer for Intact Protein Sequence Analysis. <i>Journal of the American Society for Mass Spectrometry</i> , 2017 , 28, 1787-1795	3.5	27
367	Molecular Communication over Gas Stream Channels using Portable Mass Spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2017 , 28, 2371-2383	3.5	28
366	Advanced Chemical Characterization of Pyrolysis Oils from Landfill Waste, Recycled Plastics, and Forestry Residue. <i>Energy & Energy & 2017</i> , 31, 8210-8216	4.1	24
365	Accurate Identification of Unknown and Known Metabolic Mixture Components by Combining 3D NMR with Fourier Transform Ion Cyclotron Resonance Tandem Mass Spectrometry. <i>Journal of Proteome Research</i> , 2017 , 16, 3774-3786	5.6	16
364	The repeat region of cortactin is intrinsically disordered in solution. Scientific Reports, 2017, 7, 16696	4.9	8
363	Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry for peptide de novo amino acid sequencing for a seven-protein mixture by paired single-residue transposed Lys-N and Lys-C digestion. <i>Rapid Communications in Mass</i>	2.2	3
362	A fake timing attack against behavioural tests used in embedded IoT M2M communications 2017 ,		1
361	Securing Wireless Communications of the Internet of Things from the Physical Layer, An Overview. <i>Entropy</i> , 2017 , 19, 420	2.8	35
360	Mapping the contact surfaces in the Lamin A:AIMP3 complex by hydrogen/deuterium exchange FT-ICR mass spectrometry. <i>PLoS ONE</i> , 2017 , 12, e0181869	3.7	4
359	Extracting biomolecule collision cross sections from the high-resolution FT-ICR mass spectral linewidths. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 713-7	3.6	10
358	Label-Free Relative Quantitation of Isobaric and Isomeric Human Histone H2A and H2B Variants by Fourier Transform Ion Cyclotron Resonance Top-Down MS/MS. <i>Journal of Proteome Research</i> , 2016 , 15, 3196-203	5.6	21
357	Experimental study on channel reciprocity in wireless key generation 2016 ,		18
356	Trust-Aware Consensus-Inspired Distributed Cooperative Spectrum Sensing for Cognitive Radio Ad Hoc Networks. <i>IEEE Transactions on Cognitive Communications and Networking</i> , 2016 , 2, 24-37	6.6	30
355	Quantitative Mass Spectrometry Reveals that Intact Histone H1 Phosphorylations are Variant Specific and Exhibit Single Molecule Hierarchical Dependence. <i>Molecular and Cellular Proteomics</i> , 2016 , 15, 818-33	7.6	25
354	Key Generation From Wireless Channels: A Review. <i>IEEE Access</i> , 2016 , 4, 614-626	3.5	190
353	An Improved Protocol for the Password Authenticated Association of IEEE 802.15.6 Standard That Alleviates Computational Burden on the Node. <i>Symmetry</i> , 2016 , 8, 131	2.7	5

352	Screening Petroleum Crude Oils for ARN Tetraprotic Acids with Molecularly Imprinted Polymers. <i>Energy & Discourt Fuels</i> , 2016 , 30, 5651-5655	4.1	7
351	Quantitative Mass Spectrometry Reveals Changes in Histone H2B Variants as Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation. <i>Molecular and Cellular Proteomics</i> , 2016 , 15, 2411-	2 2 .6	14
350	Chemical Sniffing Instrumentation for Security Applications. <i>Chemical Reviews</i> , 2016 , 116, 8146-72	68.1	112
349	On spatial security outage probability derivation of exposure region based beamforming with randomly located eavesdroppers 2016 ,		1
348	Efficient Key Generation by Exploiting Randomness From Channel Responses of Individual OFDM Subcarriers. <i>IEEE Transactions on Communications</i> , 2016 , 64, 2578-2588	6.9	62
347	DNA Interactions Probed by Hydrogen-Deuterium Exchange (HDX) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Confirm External Binding Sites on the Minichromosomal Maintenance (MCM) Helicase. <i>Journal of Biological Chemistry</i> , 2016 , 291, 12467-12480	5.4	14
346	Polar Lipid Composition of Biodiesel Algae Candidates Nannochloropsis oculata and Haematococcus pluvialis from Nano Liquid Chromatography Coupled with Negative Electrospray Ionization 14.5 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Energy & En</i>	4.1	15
345	Large fullerenes in mass spectra. <i>Molecular Physics</i> , 2015 , 113, 2359-2361	1.7	9
344	Isomeric Separation and Structural Characterization of Acids in Petroleum by Ion Mobility Mass Spectrometry. <i>Energy & Double of Separation and Structural Characterization of Acids in Petroleum by Ion Mobility Mass Spectrometry. Energy & Double of Separation and Structural Characterization of Acids in Petroleum by Ion Mobility Mass Spectrometry. <i>Energy & Double of Separation and Structural Characterization of Acids in Petroleum by Ion Mobility Mass Spectrometry. Energy & Double of Separation and Structural Characterization of Acids in Petroleum by Ion Mobility Mass Spectrometry. <i>Energy & Double of Separation and Structural Characterization of Acids in Petroleum by Ion Mobility Mass Spectrometry. Energy & Double of Separation and </i></i></i>	4.1	40
343	21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis. <i>Journal of the American Society for Mass Spectrometry</i> , 2015 , 26, 16	2 8 -32	133
342	40 years of Fourier transform ion cyclotron resonance mass spectrometry. <i>International Journal of Mass Spectrometry</i> , 2015 , 377, 410-420	1.9	33
341	Biophysical Mass Spectrometry for Biopharmaceutical Process Development: Focus on Hydrogen/Deuterium Exchange 2015 , 307-339		3
340	An ultrahigh-resolution mass spectrometry index to estimate natural organic matter lability. <i>Rapid Communications in Mass Spectrometry</i> , 2015 , 29, 2385-401	2.2	135
339	An effective key generation system using improved channel reciprocity 2015,		13
338	Robust Consensus-Based Cooperative Spectrum Sensing under Insistent Spectrum Sensing Data Falsification Attacks 2015 ,		7
337	Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer. <i>Journal of Mass Spectrometry</i> , 2015 , 50, 280-4	2.2	7
336	Epitope mapping of 7S cashew antigen in complex with antibody by solution-phase H/D exchange monitored by FT-ICR mass spectrometry. <i>Journal of Mass Spectrometry</i> , 2015 , 50, 812-9	2.2	17
335	Paired single residue-transposed Lys-N and Lys-C digestions for label-free identification of N-terminal and C-terminal MS/MS peptide product ions: ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry for peptide de novo	2.2	5

334	Single and Multi-metric Trust Management Frameworks for Use in Underwater Autonomous Networks 2015 ,		2	
333	The N-terminal Domain of Escherichia coli Assimilatory NADPH-Sulfite Reductase Hemoprotein Is an Oligomerization Domain That Mediates Holoenzyme Assembly. <i>Journal of Biological Chemistry</i> , 2015 , 290, 19319-33	5.4	9	
332	DART Fourier transform ion cyclotron resonance mass spectrometry for analysis of complex organic mixtures. <i>International Journal of Mass Spectrometry</i> , 2015 , 378, 186-192	1.9	29	
331	Alan G. Marshall 2015 , 143-144		1	
330	Silver Cationization for Rapid Speciation of Sulfur-Containing Species in Crude Oils by Positive Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Energy Fuels</i> , 2014 , 28, 447-452	4.1	33	
329	Lithium Cationization for Petroleum Analysis by Positive Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Description</i> 2014, 28, 6841-6847	4.1	20	
328	Transmission geometry laser desorption atmospheric pressure photochemical ionization mass spectrometry for analysis of complex organic mixtures. <i>Analytical Chemistry</i> , 2014 , 86, 11151-8	7.8	6	
327	Direct Analysis of Thin-Layer Chromatography Separations of Petroleum Samples by Laser Desorption Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Imaging. <i>Energy & Description of Energy & Description (Control of Energy)) (Control of Energy & Description (Control of Energy)) (Control of Energy)) (Control of Energy) </i>	4.1	23	
326	Solid-Phase Extraction Fractionation To Extend the Characterization of Naphthenic Acids in Crude Oil by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Energy & En</i>	4.1	65	
325	Targeted Petroleomics: Analytical Investigation of Macondo Well Oil Oxidation Products from Pensacola Beach. <i>Energy & Discourt Sensacola Beach</i> .	4.1	111	
324	Insight into the Mechanism of Graphene Oxide Degradation via the Photo-Fenton Reaction. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 10519-10529	3.8	85	
323	Unprecedented Ultrahigh Resolution FT-ICR Mass Spectrometry and Parts-Per-Billion Mass Accuracy Enable Direct Characterization of Nickel and Vanadyl Porphyrins in Petroleum from Natural Seeps. <i>Energy & Description</i> 28, 2454-2464	4.1	75	
322	A quantitative evaluation of haptic data prediction techniques over best-effort network 2014,		2	
321	Bottom-up formation of endohedral mono-metallofullerenes is directed by charge transfer. <i>Nature Communications</i> , 2014 , 5, 5844	17.4	61	
320	Creating secure wireless regions using configurable beamforming 2014,		2	
319	Secure key generation from OFDM subcarriers' channel responses 2014,		14	
318	A cooperative spectrum sensing scheme for cognitive radio ad hoc networks based on gossip and trust 2014 ,		10	
317	Rapid screening for potential epitopes reactive with a polycolonal antibody by solution-phase H/D exchange monitored by FT-ICR mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2013 , 24, 1016-25	3.5	19	

316	Laserspray and matrix-assisted ionization inlet coupled to high-field FT-ICR mass spectrometry for peptide and protein analysis. <i>Journal of the American Society for Mass Spectrometry</i> , 2013 , 24, 320-8	3.5	24
315	Heavy Petroleum Composition. 3. Asphaltene Aggregation. <i>Energy & Description</i> 2013, 27, 1246-1256	4.1	149
314	Expansion of the analytical window for oil spill characterization by ultrahigh resolution mass spectrometry: beyond gas chromatography. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	116
313	Tetramethylammonium hydroxide as a reagent for complex mixture analysis by negative ion electrospray ionization mass spectrometry. <i>Analytical Chemistry</i> , 2013 , 85, 7803-8	7.8	23
312	Oil spill source identification by principal component analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra. <i>Analytical Chemistry</i> , 2013 , 85, 9064-9	7.8	42
311	Structural switch of lysyl-tRNA synthetase between translation and transcription. <i>Molecular Cell</i> , 2013 , 49, 30-42	17.6	104
310	Characterization of IHSS Pony Lake fulvic acid dissolved organic matter by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and fluorescence spectroscopy. <i>Organic Geochemistry</i> , 2013 , 65, 19-28	3.1	79
309	Heavy Petroleum Composition. 4. Asphaltene Compositional Space. Energy & Composition 27, 1257-	142.67	133
308	Top-down structural analysis of an intact monoclonal antibody by electron capture dissociation-Fourier transform ion cyclotron resonance-mass spectrometry. <i>Analytical Chemistry</i> , 2013 , 85, 4239-46	7.8	94
307	Tailored ion radius distribution for increased dynamic range in FT-ICR mass analysis of complex mixtures. <i>Analytical Chemistry</i> , 2013 , 85, 265-72	7.8	28
306	Heavy Petroleum Composition. 5. Compositional and Structural Continuum of Petroleum Revealed. Energy & Energy	4.1	146
305	Nucleotide-induced conformational changes of tetradecameric GroEL mapped by H/D exchange monitored by FT-ICR mass spectrometry. <i>Scientific Reports</i> , 2013 , 3, 1247	4.9	26
304	Mass resolution and mass accuracy: how much is enough?. <i>Mass Spectrometry</i> , 2013 , 2, S0009	1.7	24
303	Fourier transform ion cyclotron resonance mass resolution and dynamic range limits calculated by computer modeling of ion cloud motion. <i>Journal of the American Society for Mass Spectrometry</i> , 2012 , 23, 375-84	3.5	42
302	Baseline correction of absorption-mode Fourier transform ion cyclotron resonance mass spectra. <i>International Journal of Mass Spectrometry</i> , 2012 , 325-327, 67-72	1.9	35
301	Biography and Publications of Eugene Nikolaev. <i>International Journal of Mass Spectrometry</i> , 2012 , 325-327, 3-9	1.9	
300	Characterization of Pine Pellet and Peanut Hull Pyrolysis Bio-oils by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Energy & Energ</i>	4.1	86
299	Nano-LC FTICR tandem mass spectrometry for top-down proteomics: routine baseline unit mass resolution of whole cell lysate proteins up to 72 kDa. <i>Analytical Chemistry</i> , 2012 , 84, 2111-7	7.8	35

(2011-2012)

298	Selective ionization of dissolved organic nitrogen by positive ion atmospheric pressure photoionization coupled with Fourier transform ion cyclotron resonance mass spectrometry. <i>Analytical Chemistry</i> , 2012 , 84, 5085-90	7.8	25
297	Atmospheric pressure laser-induced acoustic desorption chemical ionization mass spectrometry for analysis of saturated hydrocarbons. <i>Analytical Chemistry</i> , 2012 , 84, 7131-7	7.8	40
296	Compositional space boundaries for organic compounds. <i>Analytical Chemistry</i> , 2012 , 84, 3410-6	7.8	58
295	Identification of Potential Glycoprotein Biomarkers in Estrogen Receptor Positive (ER+) and Negative (ER-) Human Breast Cancer Tissues by LC-LTQ/FT-ICR Mass Spectrometry. <i>Journal of Cancer</i> , 2012 , 3, 269-84	4.5	14
294	Closed network growth of fullerenes. <i>Nature Communications</i> , 2012 , 3, 855	17.4	127
293	Uncovering of a short internal peptide activates a tRNA synthetase procytokine. <i>Journal of Biological Chemistry</i> , 2012 , 287, 20504-8	5.4	9
292	High resolution mass spectrometry. <i>Analytical Chemistry</i> , 2012 , 84, 708-19	7.8	177
291	Improved sequence resolution by global analysis of overlapped peptides in hydrogen/deuterium exchange mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2012 , 23, 1202-8	3.5	29
290	Unique domain appended to vertebrate tRNA synthetase is essential for vascular development. <i>Nature Communications</i> , 2012 , 3, 681	17.4	76
289	Analysis and Identification of Biomarkers and Origin of Color in a Bright Blue Crude Oil. <i>Energy & Energy Enels</i> , 2011 , 25, 172-182	4.1	36
288	Electrically compensated Fourier transform ion cyclotron resonance cell for complex mixture mass analysis. <i>Analytical Chemistry</i> , 2011 , 83, 6907-10	7.8	94
287	Differential phosphopeptide expression in a benign breast tissue, and triple-negative primary and metastatic breast cancer tissues from the same African-American woman by LC-LTQ/FT-ICR mass spectrometry. <i>Biochemical and Biophysical Research Communications</i> , 2011 , 412, 127-31	3.4	9
286	Algae Polar Lipids Characterized by Online Liquid Chromatography Coupled with Hybrid Linear Quadrupole Ion Trap/Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Energy & Fuels</i> , 2011 , 25, 4770-4775	4.1	42
285	Predator data station: A fast data acquisition system for advanced FT-ICR MS experiments. <i>International Journal of Mass Spectrometry</i> , 2011 , 306, 246-252	1.9	186
284	Identification of Phosphorylated Human Peptides by Accurate Mass Measurement Alone. <i>International Journal of Mass Spectrometry</i> , 2011 , 308, 357-361	1.9	5
283	Excitation of radial ion motion in an rf-only multipole ion guide immersed in a strong magnetic field gradient. <i>Journal of the American Society for Mass Spectrometry</i> , 2011 , 22, 591-601	3.5	11
282	A novel 9.4 tesla FTICR mass spectrometer with improved sensitivity, mass resolution, and mass range. <i>Journal of the American Society for Mass Spectrometry</i> , 2011 , 22, 1343-51	3.5	182
281	Petroleomics: advanced molecular probe for petroleum heavy ends. <i>Journal of Mass Spectrometry</i> , 2011 , 46, 337-43	2.2	151

280	Compositional Boundaries for Fossil Hydrocarbons. <i>Energy & Damp; Fuels</i> , 2011 , 25, 2174-2178	4.1	88
279	Valence parity to distinguish c' and zllons from electron capture dissociation/electron transfer dissociation of peptides: effects of isomers, isobars, and proteolysis specificity. <i>Analytical Chemistry</i> , 2011 , 83, 8024-8	7.8	6
278	Atmospheric pressure laser-induced acoustic desorption chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for the analysis of complex mixtures. <i>Analytical Chemistry</i> , 2011 , 83, 1616-23	7.8	40
277	Parts-per-billion Fourier transform ion cyclotron resonance mass measurement accuracy with a "walking" calibration equation. <i>Analytical Chemistry</i> , 2011 , 83, 1732-6	7.8	147
276	Epitope mapping of a 95 kDa antigen in complex with antibody by solution-phase amide backbone hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance mass spectrometry. <i>Analytical Chemistry</i> , 2011 , 83, 7129-36	7.8	99
275	Unit mass baseline resolution for an intact 148 kDa therapeutic monoclonal antibody by Fourier transform ion cyclotron resonance mass spectrometry. <i>Analytical Chemistry</i> , 2011 , 83, 8391-5	7.8	55
274	Characterization of naphthenic acids in crude oils and naphthenates by electrospray ionization FT-ICR mass spectrometry. <i>International Journal of Mass Spectrometry</i> , 2011 , 300, 149-157	1.9	113
273	Structural context for mobilization of a human tRNA synthetase from its cytoplasmic complex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 8239-44	11.5	30
272	Dispersed disease-causing neomorphic mutations on a single protein promote the same localized conformational opening. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 12307-12	11.5	46
271	Automated broadband phase correction of Fourier transform ion cyclotron resonance mass spectra. <i>Analytical Chemistry</i> , 2010 , 82, 8807-12	7.8	131
270	Water-soluble atmospheric organic matter in fog: exact masses and chemical formula identification by ultrahigh-resolution fourier transform ion cyclotron resonance mass spectrometry. Environmental Science & Environmental	10.3	170
269	Stepwise Structural Characterization of Asphaltenes during Deep Hydroconversion Processes Determined by Atmospheric Pressure Photoionization (APPI) Fourier Transform Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry [] Energy & amp; Fuels, 2010, 24, 2257-2265	4.1	112
268	Conformational states of human purine nucleoside phosphorylase at rest, at work, and with transition state analogues. <i>Biochemistry</i> , 2010 , 49, 2058-67	3.2	23
267	Combining biomarker and bulk compositional gradient analysis to assess reservoir connectivity. <i>Organic Geochemistry</i> , 2010 , 41, 812-821	3.1	60
266	Heavy Petroleum Composition. 1. Exhaustive Compositional Analysis of Athabasca Bitumen HVGO Distillates by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: A Definitive Test of the Boduszynski Model. <i>Energy & Definition</i> 24, 2929-2938	4.1	131
265	Heavy Petroleum Composition. 2. Progression of the Boduszynski Model to the Limit of Distillation by Ultrahigh-Resolution FT-ICR Mass Spectrometry. <i>Energy & Energy </i>	4.1	96
264	Petroleomics: a test bed for ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry. <i>European Journal of Mass Spectrometry</i> , 2010 , 16, 367-71	1.1	16
263	Automated data reduction for hydrogen/deuterium exchange experiments, enabled by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2010 , 21, 550-8	3.5	54

262	Drug binding and resistance mechanism of KIT tyrosine kinase revealed by hydrogen/deuterium exchange FTICR mass spectrometry. <i>Protein Science</i> , 2010 , 19, 703-15	6.3	24	
261	Comprehensive characterization of marine dissolved organic matter by Fourier transform ion cyclotron resonance mass spectrometry with electrospray and atmospheric pressure photoionization. <i>Rapid Communications in Mass Spectrometry</i> , 2010 , 24, 643-50	2.2	84	
260	The coupling of direct analysis in real time ionization to Fourier transform ion cyclotron resonance mass spectrometry for ultrahigh-resolution mass analysis. <i>Rapid Communications in Mass Spectrometry</i> , 2010 , 24, 784-90	2.2	53	
259	Sites and extent of selenomethionine incorporation into recombinant Cas6 protein by top-down and bottom-up proteomics with 14.5 T Fourier transform ion cyclotron resonance mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2010 , 24, 2386-92	2.2	3	
258	KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 1542-7	11.5	288	
257	SIMION modeling of ion image charge detection in Fourier transform ion cyclotron resonance mass spectrometry. <i>International Journal of Mass Spectrometry</i> , 2009 , 283, 100-104	1.9	19	
256	Fast reversed-phase liquid chromatography to reduce back exchange and increase throughput in H/D exchange monitored by FT-ICR mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2009 , 20, 520-4	3.5	61	
255	Periodic sequence distribution of product ion abundances in electron capture dissociation of amphipathic peptides and proteins. <i>Journal of the American Society for Mass Spectrometry</i> , 2009 , 20, 100 periodic sequences.	118 2:5 92	41	
254	Automated electrospray ionization FT-ICR mass spectrometry for petroleum analysis. <i>Journal of the American Society for Mass Spectrometry</i> , 2009 , 20, 263-8	3.5	37	
253	A robust two-dimensional separation for top-down tandem mass spectrometry of the low-mass proteome. <i>Journal of the American Society for Mass Spectrometry</i> , 2009 , 20, 2183-91	3.5	81	
252	Effect of Thermal Treatment on Acidic Organic Species from Athabasca Bitumen Heavy Vacuum Gas Oil, Analyzed by Negative-Ion Electrospray Fourier Transform Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry. <i>Energy & Discourt Senior </i>	4.1	54	
251	Sequential proteolysis and high-field FTICR MS to determine disulfide connectivity and 4-maleimide TEMPO spin-label location in L126C GM2 activator protein. <i>Analytical Chemistry</i> , 2009 , 81, 7611-7	7.8	6	
250	Combining bottom-up and top-down mass spectrometric strategies for de novo sequencing of the crustacean hyperglycemic hormone from Cancer borealis. <i>Analytical Chemistry</i> , 2009 , 81, 240-7	7.8	29	
249	Mapping of the allosteric network in the regulation of alpha-isopropylmalate synthase from Mycobacterium tuberculosis by the feedback inhibitor L-leucine: solution-phase H/D exchange monitored by FT-ICR mass spectrometry. <i>Biochemistry</i> , 2009 , 48, 7457-64	3.2	36	
248	Microchip atmospheric pressure photoionization for analysis of petroleum by Fourier transform ion cyclotron resonance mass spectrometry. <i>Analytical Chemistry</i> , 2009 , 81, 2799-803	7.8	26	
247	Petroleum crude oil characterization by IMS-MS and FTICR MS. <i>Analytical Chemistry</i> , 2009 , 81, 9941-7	7.8	143	
246	Identification of Vanadyl Porphyrins in a Heavy Crude Oil and Raw Asphaltene by Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry. <i>Energy & District Mass Spectrometry</i> 23, 2122-2128	4.1	171	
245	Chemical Speciation of Calcium and Sodium Naphthenate Deposits by Electrospray Ionization FT-ICR Mass Spectrometry. <i>Energy & Energy & Source States Spectrometry</i> 100 (1997) 10	4.1	73	

244	High-resolution mass spectrometers. Annual Review of Analytical Chemistry, 2008, 1, 579-99	12.5	269
243	Characterization of Acidic Species in Athabasca Bitumen and Bitumen Heavy Vacuum Gas Oil by Negative-Ion ESI FTICR MS with and without AcidIbn Exchange Resin Prefractionation. <i>Energy & Mamp; Fuels</i> , 2008 , 22, 2372-2378	4.1	72
242	Crude Oil Polar Chemical Composition Derived from FT I CR Mass Spectrometry Accounts for Asphaltene Inhibitor Specificity. <i>Energy & Dolorow</i> , Fuels, 2008 , 22, 3112-3117	4.1	59
241	Specific electrochemical iodination of horse heart myoglobin at tyrosine 103 as determined by Fourier transform ion cyclotron resonance mass spectrometry. <i>Archives of Biochemistry and Biophysics</i> , 2008 , 474, 1-7	4.1	11
240	Contrasting Perspective on Asphaltene Molecular Weight. This Comment vs the Overview of A. A. Herod, K. D. Bartle, and R. Kandiyoti. <i>Energy & Energy & Ener</i>	4.1	145
239	Automated liquid injection field desorption/ionization for Fourier transform ion cyclotron resonance mass spectrometry. <i>Analytical Chemistry</i> , 2008 , 80, 7379-82	7.8	28
238	High-performance mass spectrometry: Fourier transform ion cyclotron resonance at 14.5 Tesla. <i>Analytical Chemistry</i> , 2008 , 80, 3985-90	7.8	177
237	Characterization of Athabasca Bitumen Heavy Vacuum Gas Oil Distillation Cuts by Negative/Positive Electrospray Ionization and Automated Liquid Injection Field Desorption Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Description</i> 2017,	4.1	78
236	Enhanced digestion efficiency, peptide ionization efficiency, and sequence resolution for protein hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance mass spectrometry. <i>Analytical Chemistry</i> , 2008 , 80, 9034-41	7.8	78
235	Petroleomics: chemistry of the underworld. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 18090-5	11.5	508
234	The 'hybrid cell': a new compensated infinity cell for larger radius ion excitation in Fourier transform ion cyclotron resonance mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2008 , 22, 1423-9	2.2	8
233	Naphthenic acids as indicators of crude oil biodegradation in soil, based on semi-quantitative electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2008 , 22, 3968-76	2.2	49
232	Electron capture dissociation implementation progress in Fourier transform ion cyclotron resonance mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2008 , 19, 762-71	3.5	30
231	Identification of water-soluble heavy crude oil organic-acids, bases, and neutrals by electrospray ionization and field desorption ionization fourier transform ion cyclotron resonance mass spectrometry. <i>Environmental Science & Description (Lamp)</i> , 2007, 41, 2696-702	10.3	108
230	Sulfur Speciation in Petroleum: Atmospheric Pressure Photoionization or Chemical Derivatization and Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Comp.</i> ; Fuels, 2007, 21, 2869-2874	4.1	154
229	Heat-Exchanger Deposits in an Inverted Steam-Assisted Gravity Drainage Operation. Part 2. Organic Acid Analysis by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Drainage Communication</i> , 21, 185-194	4.1	31
228	Detailed Elemental Compositions of Emulsion Interfacial Material versus Parent Oil for Nine Geographically Distinct Light, Medium, and Heavy Crude Oils, Detected by Negative- and Positive-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass	4.1	73
227	Spectrometry. Energy & Samp; Fuels, 2007, 21, 973-981 Ion activation in electron capture dissociation to distinguish between N-terminal and C-terminal product ions. Analytical Chemistry, 2007, 79, 7596-602	7.8	62

226	Self-Association of Organic Acids in Petroleum and Canadian Bitumen Characterized by Low- and High-Resolution Mass Spectrometry [Intergy & Energy & 2007, 21, 1309-1316]	4.1	49
225	Fourier transform ion cyclotron resonance spectroscopy. <i>Journal of Mass Spectrometry</i> , 2007 , 31, 586-5	587.2	
224	Frequency-sweep fourier tranform ion cyclotron resonance spectroscopy. <i>Journal of Mass Spectrometry</i> , 2007 , 31, 588-589	2.2	
223	Molecular characterization of dissolved organic matter in a North Brazilian mangrove porewater and mangrove-fringed estuaries by ultrahigh resolution Fourier Transform-Ion Cyclotron Resonance mass spectrometry and excitation/emission spectroscopy. <i>Marine Chemistry</i> , 2007 , 105, 15-	3.7 - 29	116
222	Speciation of nitrogen containing aromatics by atmospheric pressure photoionization or electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2007 , 18, 1265-73	3.5	103
221	Identification of single and double sites of phosphorylation by ECD FT-ICR/MS in peptides related to the phosphorylation site domain of the myristoylated alanine-rich C kinase protein. <i>Journal of the American Society for Mass Spectrometry</i> , 2007 , 18, 2137-45	3.5	11
220	Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy. <i>Analytical and Bioanalytical Chemistry</i> , 2007 , 389, 1397-407	4.4	77
219	Trimeric, Cyclic Dimethyltin-Containing Tungstophosphate [{(Sn(CH3)2)(Sn(CH3)2O)(A-PW9O34)}3]21\(\textstyle \textstyle Journal of Cluster Science, \textbf{2007}, 18, 173-191	3	21
218	Atmospheric pressure photoionization proton transfer for complex organic mixtures investigated by fourier transform ion cyclotron resonance mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2007 , 18, 1682-9	3.5	90
217	Petroleomics: Advanced Characterization of Petroleum-Derived Materials by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) 2007 , 63-93		88
216	Compositional Characterization of Bitumen/Water Emulsion Films by Negative- and Positive-Ion Electrospray Ionization and Field Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Domain</i> , Fuels, 2007, 21, 963-972	4.1	100
215	Impact of ion magnetron motion on electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry. <i>International Journal of Mass Spectrometry</i> , 2006 , 255-256, 144-149	1.9	31
214	Interaction of packaging motor with the polymerase complex of dsRNA bacteriophage. <i>Virology</i> , 2006 , 351, 73-9	3.6	28
213	Characterization of the capsid protein glycosylation of adeno-associated virus type 2 by high-resolution mass spectrometry. <i>Journal of Virology</i> , 2006 , 80, 6171-6	6.6	18
212	Probing protein ligand interactions by automated hydrogen/deuterium exchange mass spectrometry. <i>Analytical Chemistry</i> , 2006 , 78, 1005-14	7.8	250
211	Characterization of Compositional Changes in Vacuum Gas Oil Distillation Cuts by Electrospray Ionization Fourier TransformIbn Cyclotron Resonance (FTICR) Mass Spectrometry. <i>Energy & Energy & Fuels</i> , 2006 , 20, 1664-1673	4.1	78
210	Mass Spectral Analysis of Asphaltenes. II. Detailed Compositional Comparison of Asphaltenes Deposit to Its Crude Oil Counterpart for Two Geographically Different Crude Oils by ESI FT-ICR MS. <i>Energy & Different Crude Oils by ESI FT-ICR MS</i> .	4.1	134
209	Mass Spectral Analysis of Asphaltenes. I. Compositional Differences between Pressure-Drop and Solvent-Drop Asphaltenes Determined by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Fuels</i> , 2006 , 20, 1965-1972	4.1	123

208	Atmospheric pressure photoionization fourier transform ion cyclotron resonance mass spectrometry for complex mixture analysis. <i>Analytical Chemistry</i> , 2006 , 78, 5906-12	7.8	217
207	Use of Saturates/Aromatics/Resins/Asphaltenes (SARA) Fractionation To Determine Matrix Effects in Crude Oil Analysis by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & District Material Resonance Mass</i> (2006) 20, 668-672	4.1	116
206	Oil Reservoir Characterization via Crude Oil Analysis by Downhole Fluid Analysis in Oil Wells with VisibleNear-Infrared Spectroscopy and by Laboratory Analysis with Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Energy & Ener</i>	4.1	32
205	External electron ionization 7T Fourier transform ion cyclotron resonance mass spectrometer for resolution and identification of volatile organic mixtures. <i>Review of Scientific Instruments</i> , 2006 , 77, 025	162	6
204	De novo sequencing and disulfide mapping of a bromotryptophan-containing conotoxin by Fourier transform ion cyclotron resonance mass spectrometry. <i>Analytical Chemistry</i> , 2006 , 78, 8082-8	7.8	45
203	Comprehensive Compositional Analysis of Hydrotreated and Untreated Nitrogen-Concentrated Fractions from Syncrude Oil by Electron Ionization, Field Desorption Ionization, and Electrospray Ionization Ultrahigh-Resolution FT-ICR Mass Spectrometry. <i>Energy & Description</i> 20, 1235-1241	4.1	70
202	Nonpolar Compositional Analysis of Vacuum Gas Oil Distillation Fractions by Electron Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Distillation Fractions Spectrometry</i> . <i>Energy & Distillation Fractions</i> . 2006, 20, 661-667	4.1	51
201	Structural Characterization and Interfacial Behavior of Acidic Compounds Extracted from a North Sea Oil. <i>Energy & Energy & Energ</i>	4.1	70
200	Structural characterization of an unusually stable cyclic peptide, kalata B2 from Oldenlandia affinis. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2006 , 1764, 1568-76	4	33
199	Identification of hydrotreatment-resistant heteroatomic species in a crude oil distillation cut by electrospray ionization FT-ICR mass spectrometry. <i>Fuel</i> , 2006 , 85, 2071-2080	7.1	65
198	Truly <code>BxactImass</code> : Elemental composition can be determined uniquely from molecular mass measurement at ~0.1mDa accuracy for molecules up to ~500Da. <i>International Journal of Mass Spectrometry</i> , 2006 , 251, 260-265	1.9	134
197	Charge location directs electron capture dissociation of peptide dications. <i>Journal of the American Society for Mass Spectrometry</i> , 2006 , 17, 1704-11	3.5	31
196	Combined top-down and bottom-up mass spectrometric approach to characterization of biomarkers for renal disease. <i>Analytical Chemistry</i> , 2005 , 77, 7163-71	7.8	82
195	Speciation of Aromatic Compounds in Petroleum Refinery Streams by Continuous Flow Field Desorption Ionization FT-ICR Mass Spectrometry. <i>Energy & Energy & E</i>	4.1	65
194	Multicomponent internal recalibration of an LC-FTICR-MS analysis employing a partially characterized complex peptide mixture: systematic and random errors. <i>Analytical Chemistry</i> , 2005 , 77, 7246-54	7.8	23
193	Comparative Compositional Analysis of Untreated and Hydrotreated Oil by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Energy </i>	,4 .1	33
192	Instrumentation and method for ultrahigh resolution field desorption ionization fourier transform ion cyclotron resonance mass spectrometry of nonpolar species. <i>Analytical Chemistry</i> , 2005 , 77, 1317-24	₁ 7.8	68
191	Microbial alteration of the acidic and neutral polar NSO compounds revealed by Fourier transform ion cyclotron resonance mass spectrometry. <i>Organic Geochemistry</i> , 2005 , 36, 1117-1134	3.1	170

190	Petroleomics: MS Returns to Its Roots <i>Analytical Chemistry</i> , 2005 , 77, 20 A-27 A	7.8	249
189	Assigning product ions from complex MS/MS spectra: the importance of mass uncertainty and resolving power. <i>Journal of the American Society for Mass Spectrometry</i> , 2005 , 16, 183-98	3.5	64
188	Structural characterization of the GM1 ganglioside by infrared multiphoton dissociation, electron capture dissociation, and electron detachment dissociation electrospray ionization FT-ICR MS/MS. <i>Journal of the American Society for Mass Spectrometry</i> , 2005 , 16, 752-62	3.5	53
187	Evaluation and optimization of electron capture dissociation efficiency in fourier transform ion cyclotron resonance mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2005 , 16, 1060-6	3.5	29
186	ESI FT-ICR mass spectral analysis of coal liquefaction products. Fuel, 2005, 84, 1790-1797	7.1	66
185	Functional visualization of viral molecular motor by hydrogen-deuterium exchange reveals transient states. <i>Nature Structural and Molecular Biology</i> , 2005 , 12, 460-6	17.6	54
184	The role of electron capture dissociation in biomolecular analysis. <i>Mass Spectrometry Reviews</i> , 2005 , 24, 201-22	11	426
183	Free electron laser-Fourier transform ion cyclotron resonance mass spectrometry facility for obtaining infrared multiphoton dissociation spectra of gaseous ions. <i>Review of Scientific Instruments</i> , 2005 , 76, 023103	1.7	273
182	Identifying bryostatins and potential precursors from the bryozoan Bugula neritina. <i>Natural Product Research</i> , 2005 , 19, 467-91	2.3	16
181	Determination of aberrant O-glycosylation in the IgA1 hinge region by electron capture dissociation fourier transform-ion cyclotron resonance mass spectrometry. <i>Journal of Biological Chemistry</i> , 2005 , 280, 19136-45	5.4	116
180	Accurate mass measurement: taking full advantage of nature's isotopic complexity. <i>Physica B: Condensed Matter</i> , 2004 , 346-347, 503-508	2.8	10
179	Protein kinase A phosphorylation characterized by tandem Fourier transform ion cyclotron resonance mass spectrometry. <i>Proteomics</i> , 2004 , 4, 970-81	4.8	75
178	Continuous-flow sample introduction for field desorption/ionization mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2004 , 18, 1641-1644	2.2	31
177	Electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry of cyclodepsipeptides, branched peptides, and Epeptides. <i>International Journal of Mass Spectrometry</i> , 2004 , 234, 23-35	1.9	26
176	Construction of a hybrid quadrupole/Fourier transform ion cyclotron resonance mass spectrometer for versatile MS/MS above 10 kDa. <i>Journal of the American Society for Mass Spectrometry</i> , 2004 , 15, 109	9 ³ 158	101
175	Wavelength resolved laser-induced fluorescence emission of . Chemical Physics Letters, 2004, 394, 188-	1 9 3 ,	13
174	Theoretical and experimental prospects for protein identification based solely on accurate mass measurement. <i>Journal of Proteome Research</i> , 2004 , 3, 61-7	5.6	71
173	Compositional Determination of Acidic Species in Illinois No. 6 Coal Extracts by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & amp; Fuels</i> , 2004 , 18, 1424-1428	4.1	63

172	Broadband phase correction of FT-ICR mass spectra via simultaneous excitation and detection. <i>Analytical Chemistry</i> , 2004 , 76, 5756-61	7.8	51
171	Characterization of vegetable oils: detailed compositional fingerprints derived from electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. <i>Journal of Agricultural and Food Chemistry</i> , 2004 , 52, 5322-8	5.7	94
170	Petroleomics: the next grand challenge for chemical analysis. <i>Accounts of Chemical Research</i> , 2004 , 37, 53-9	24.3	611
169	Time resolved laser-induced fluorescence of electrosprayed ions confined in a linear quadrupole trap. <i>Review of Scientific Instruments</i> , 2004 , 75, 4511-4515	1.7	25
168	Acidic and neutral polar NSO compounds in Smackover oils of different thermal maturity revealed by electrospray high field Fourier transform ion cyclotron resonance mass spectrometry. <i>Organic Geochemistry</i> , 2004 , 35, 863-880	3.1	146
167	Two- and three-dimensional van krevelen diagrams: a graphical analysis complementary to the kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband fourier transform ion cyclotron resonance mass measurements.	7.8	217
166	Improved mass analysis of oligoribonucleotides by 13C, 15N double depletion and electrospray ionization FT-ICR mass spectrometry. <i>Analytical Chemistry</i> , 2004 , 76, 1804-9	7.8	7
165	Letter: the diagnostic value of amino acid side-chain losses in electron capture dissociation of polypeptides. Comment on: "Can the (M(.)-X) region in electron capture dissociation provide reliable information on amino acid composition of polypeptides?", Eur. J. Mass Spectrom. 8,	1.1	34
164	Electron capture dissociation and infrared multiphoton dissociation of oligodeoxynucleotide dications. <i>Journal of the American Society for Mass Spectrometry</i> , 2003 , 14, 23-41	3.5	71
163	An antibiotic linked to peptides and proteins is released by electron capture dissociation fourier transform ion cyclotron resonance mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2003 , 14, 302-10	3.5	18
162	Secondary fragmentation of linear peptides in electron capture dissociation. <i>International Journal of Mass Spectrometry</i> , 2003 , 228, 723-728	1.9	76
161	Resolution of 10 000 Compositionally Distinct Components in Polar Coal Extracts by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Energy Fuels</i> , 2003 , 17, 946-953	4.1	96
160	High-resolution field desorption/ionization fourier transform ion cyclotron resonance mass analysis of nonpolar molecules. <i>Analytical Chemistry</i> , 2003 , 75, 2172-6	7.8	75
159	Photochemically Generated PolyacrylonitrileBilica Nanocomposites: Optimized Fabrication and Characterization. <i>Chemistry of Materials</i> , 2003 , 15, 1289-1295	9.6	5
158	Liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometric characterization of protein kinase C phosphorylation. <i>Journal of Proteome Research</i> , 2003 , 2, 373-82	5.6	39
157	Structural analysis of 2D-gel-separated glycoproteins from human cerebrospinal fluid by tandem high-resolution mass spectrometry. <i>Journal of Proteome Research</i> , 2003 , 2, 581-8	5.6	32
156	Combined electron capture and infrared multiphoton dissociation for multistage MS/MS in a Fourier transform ion cyclotron resonance mass spectrometer. <i>Analytical Chemistry</i> , 2003 , 75, 3256-62	7.8	228
155	Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometric analysis of metal-ion selected dynamic protein libraries. <i>Journal of the American Chemical Society</i> , 2003 , 125, 5331-	9 ^{16.4}	31

(2001-2003)

154	Identification of novel interactions in HIV-1 capsid protein assembly by high-resolution mass spectrometry. <i>Journal of Molecular Biology</i> , 2003 , 325, 759-72	6.5	188
153	Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra. <i>Analytical Chemistry</i> , 2003 , 75, 1275-84	7.8	468
152	Fourier transform ion cyclotron resonance detection: principles and experimental configurations. <i>International Journal of Mass Spectrometry</i> , 2002 , 215, 59-75	1.9	154
151	Characterization of amino acid side chain losses in electron capture dissociation. <i>Journal of the American Society for Mass Spectrometry</i> , 2002 , 13, 241-9	3.5	140
150	Improved ion extraction from a linear octopole ion trap: SIMION analysis and experimental demonstration. <i>Journal of the American Society for Mass Spectrometry</i> , 2002 , 13, 1304-12	3.5	138
149	Mapping of protein:protein contact surfaces by hydrogen/deuterium exchange, followed by on-line high-performance liquid chromatography-electrospray ionization Fourier-transform ion-cyclotron-resonance mass analysis. <i>Journal of Chromatography A</i> , 2002 , 982, 85-95	4.5	41
148	Resolution of Individual Component Fluorescence Lifetimes from a Mixture of Trapped Ions by Laser-Induced Fluorescence/Ion Cyclotron Resonance <i>Journal of Physical Chemistry A</i> , 2002 , 106, 10033	- 10 036	5 ¹⁶
147	Resolution of 11,000 compositionally distinct components in a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of crude oil. <i>Analytical Chemistry</i> , 2002 , 74, 4145-9	7.8	337
146	Scaling MS plateaus with high-resolution FT-ICRMS. <i>Analytical Chemistry</i> , 2002 , 74, 252A-259A	7.8	95
145	Ionization and fragmentation of humic substances in electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry. <i>Analytical Chemistry</i> , 2002 , 74, 4397-409	7.8	237
144	Identification of acidic NSO compounds in crude oils of different geochemical origins by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. <i>Organic Geochemistry</i> , 2002 , 33, 743-759	3.1	250
143	Noise analysis for 2D tandem Fourier transform ion cyclotron resonance mass spectrometry. <i>International Journal of Mass Spectrometry</i> , 2001 , 210-211, 101-111	1.9	24
142	Gas-phase hydrogen/deuterium exchange of positively charged mononucleotides by use of Fourier-transform ion cyclotron resonance mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2001 , 12, 268-77	3.5	47
141	Charge reduction lowers mass resolving power for isotopically resolved electrospray ionization Fourier transform ion cyclotron resonance mass spectra. <i>Rapid Communications in Mass Spectrometry</i> , 2001 , 15, 232-235	2.2	26
140	Direct optical spectroscopy of gas-phase molecular ions trapped and mass-selected by ion cyclotron resonance: laser-induced fluorescence excitation spectrum of hexafluorobenzene (C6F6+). Chemical Physics Letters, 2001, 334, 69-75	2.5	33
139	Resolution and Identification of Elemental Compositions for More than 3000 Crude Acids in Heavy Petroleum by Negative-Ion Microelectrospray High-Field Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Double Spectrometry</i> 2001, 15, 1505-1511	4.1	342
138	Molecular characterization of petroporphyrins in crude oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. <i>Canadian Journal of Chemistry</i> , 2001 , 79, 546-551	0.9	90
137	Electron capture dissociation and infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic peptic to yield complementary sequence information. <i>Analytical Chemistry</i> , 2001 , 73, 4530-6	7.8	343

136	Reading Chemical Fine Print: Resolution and Identification of 3000 Nitrogen-Containing Aromatic Compounds from a Single Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrum of Heavy Petroleum Crude Oil. <i>Energy & Dolory; Fuels</i> , 2001 , 15, 492-498	4.1	279
135	Elemental Composition Analysis of Processed and Unprocessed Diesel Fuel by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Energy & Ener</i>	4.1	160
134	High-sensitivity electron capture dissociation tandem FTICR mass spectrometry of microelectrosprayed peptides. <i>Analytical Chemistry</i> , 2001 , 73, 3605-10	7.8	68
133	Baseline mass resolution of peptide isobars: a record for molecular mass resolution. <i>Analytical Chemistry</i> , 2001 , 73, 647-50	7.8	87
132	Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-resolution broadband mass spectra. <i>Analytical Chemistry</i> , 2001 , 73, 4676-81	7.8	593
131	Compositional Analysis for Identification of Arson Accelerants by Electron Ionization Fourier Transform Ion Cyclotron Resonance High-Resolution Mass Spectrometry. <i>Journal of Forensic Sciences</i> , 2001 , 46, 14959J	1.8	15
130	Milestones in fourier transform ion cyclotron resonance mass spectrometry technique development. <i>International Journal of Mass Spectrometry</i> , 2000 , 200, 331-356	1.9	252
129	Comparison and interconversion of the two most common frequency-to-mass calibration functions for Fourier transform ion cyclotron resonance mass spectrometry. <i>International Journal of Mass Spectrometry</i> , 2000 , 195-196, 591-598	1.9	164
128	Stable isotope incorporation triples the upper mass limit for determination of elemental composition by accurate mass measurement. <i>Journal of the American Society for Mass Spectrometry</i> , 2000 , 11, 835-40	3.5	33
127	Competitive binding to the oligopeptide binding protein, OppA: in-trap cleanup in an Fourier transform ion cyclotron resonance mass spectrometer. <i>Journal of the American Society for Mass Spectrometry</i> , 2000 , 11, 1023-6	3.5	11
126	Unequivocal determination of metal atom oxidation state in naked heme proteins: Fe(III)myoglobin, Fe(III)cytochrome c, Fe(III)cytochrome b5, and Fe(III)cytochrome b5 L47R. <i>Journal of the American Society for Mass Spectrometry</i> , 2000 , 11, 120-6	3.5	53
125	Complete Compositional Monitoring of the Weathering of Transportation Fuels Based on Elemental Compositions from Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Environmental Science & Environmental & Environmental Science & Environmental Science & Environmental &</i>	10.3	28
124	Theoretical maximal precision for mass-to-charge ratio, amplitude, and width measurements in ion-counting mass analyzers. <i>Analytical Chemistry</i> , 2000 , 72, 2256-60	7.8	16
123	Isotopic Amplification, H/D Exchange, and Other Mass Spectrometric Strategies for Characterization of Biomacromolecular Topology and Binding Sites 2000 , 31-52		2
122	Gas-phase bovine ubiquitin cation conformations resolved by gas-phase hydrogen/deuterium exchange rate and extent. <i>International Journal of Mass Spectrometry</i> , 1999 , 185-187, 565-575	1.9	119
121	Fourier transform ion cyclotron resonance mass spectrometry in a high homogeneity 25 tesla resistive magnet. <i>Journal of the American Society for Mass Spectrometry</i> , 1999 , 10, 265-268	3.5	17
120	Characterization of a single crystal cubic Prussian blue Co8(tacn)8(CN)12 cluster by ion trap and Fourier transform ion cyclotron resonance mass spectrometry with microelectrospray ionization. Journal of the American Society for Mass Spectrometry, 1999, 10, 352-354	3.5	5
119	Fourier transform ion cyclotron resonance mass spectrometric detection of small Ca(2+)-induced conformational changes in the regulatory domain of human cardiac troponin C. <i>Journal of the American Society for Mass Spectrometry</i> , 1999 , 10, 703-10	3.5	31

118	Matrix-shimmed ion cyclotron resonance ion trap simultaneously optimized for excitation, detection, quadrupolar axialization, and trapping. <i>Journal of the American Society for Mass Spectrometry</i> , 1999 , 10, 759-769	3.5	25
117	Self-chemical ionization of diethylzinc. <i>Rapid Communications in Mass Spectrometry</i> , 1999 , 13, 1622-5	2.2	1
116	Gas phase activation energy for unimolecular dissociation of biomolecular ions determined by focused RAdiation for gaseous multiphoton ENergy transfer (FRAGMENT). <i>Rapid Communications in Mass Spectrometry</i> , 1999 , 13, 1639-42	2.2	38
115	Digital Quadrature Heterodyne Detection for High-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Analytical Chemistry</i> , 1999 , 71, 4758-4763	7.8	14
114	Identification of intact proteins in mixtures by alternated capillary liquid chromatography electrospray ionization and LC ESI infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry. <i>Analytical Chemistry</i> , 1999 , 71, 4397-402	7.8	108
113	Structural validation of saccharomicins by high resolution and high mass accuracy fourier transform-ion cyclotron resonance-mass spectrometry and infrared multiphoton dissociation tandem mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 1999 , 10, 1285-1290	3.5)	32
112	Fourier transform ion cyclotron resonance mass spectrometry: a primer. <i>Mass Spectrometry Reviews</i> , 1998 , 17, 1-35	11	1537
111	A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra. <i>Journal of the American Society for Mass Spectrometry</i> , 1998 , 9, 225-33	3.5	426
110	Application of micro-electrospray liquid chromatography techniques to FT-ICR MS to enable high-sensitivity biological analysis. <i>Journal of the American Society for Mass Spectrometry</i> , 1998 , 9, 333-4	10 ^{3.5}	156
109	Laser-induced fluorescence for ion tomography in a Penning trap. <i>Journal of the American Society for Mass Spectrometry</i> , 1998 , 9, 925-930	3.5	5
108	High-field fourier transform ion cyclotron resonance mass spectrometry for simultaneous trapping and gas-phase hydrogen/deuterium exchange of peptide ions. <i>Journal of the American Society for Mass Spectrometry</i> , 1998 , 9, 1012-1019	3.5	56
107	Resolution, Elemental Composition, and Simultaneous Monitoring by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Organosulfur Species before and after Diesel Fuel Processing. <i>Analytical Chemistry</i> , 1998 , 70, 4743-4750	7.8	8o
106	Identification, Composition, and Asymmetric Formation Mechanism of Glycidyl Methacrylate/Butyl Methacrylate Copolymers up to 7000 Da from Electrospray Ionization Ultrahigh-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Analytical Chemistry</i> , 1998 , 70, 3220-6	7.8	38
105	Photodissociation of Gas-Phase Polycylic Aromatic Hydrocarbon Cations. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 3498-3504	2.8	109
104	Radiatively Self-Cooled Penning-Trapped Electrons: A New Way To Make Gas-Phase Negative Ions from Neutrals of Low Electron Affinity. <i>Journal of the American Chemical Society</i> , 1997 , 119, 2267-2272	16.4	7
103	Linear prediction Cholesky decomposition vs Fourier transform spectral analysis for ion cyclotron resonance mass spectrometry. <i>Analytical Chemistry</i> , 1997 , 69, 1156-62	7.8	18
102	Protein Molecular Mass to 1 Da by 13C, 15N Double-Depletion and FT-ICR Mass Spectrometry. Journal of the American Chemical Society, 1997 , 119, 433-434	16.4	101
101	Fullerenes and Polymers Produced by the Chemical Vapor Deposition Method. <i>ACS Symposium Series</i> , 1997 , 51-60	0.4	6

100	Linearity and quadrupolarity of tetragonal and cylindrical penning traps of arbitrary length-to-width ratio. <i>Journal of the American Society for Mass Spectrometry</i> , 1997 , 8, 283-293	3.5	19
99	External accumulation of ions for enhanced electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 1997 , 8, 970-976	3.5	428
98	A combined linear ion trap for mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 1997 , 8, 962-969	3.5	16
97	Enhancement of the effective resolution of mass spectra of high-mass biomolecules by maximum entropy-based deconvolution to eliminate the isotopic natural abundance distribution. <i>Journal of the American Society for Mass Spectrometry</i> , 1997 , 8, 659-670	3.5	73
96	Sympathetic cooling of trapped negative ions by self-cooled electrons in a fourier transform ion cyclotron resonance mass spectrometer. <i>Journal of the American Society for Mass Spectrometry</i> , 1997 , 8, 793-800	3.5	16
95	Effect of ion-neutral collision mechanism on the trapped-ion equation of motion: a new mass spectral line shape for high-mass trapped ions. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1997 , 167-168, 185-193		32
94	Two-plate vs. four-plate azimuthal quadrupolar excitation for FT-ICR mass spectrometry. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1997 , 165-166, 327-338		13
93	Human recombinant [C22A] FK506-binding protein amide hydrogen exchange rates from mass spectrometry match and extend those from NMR. <i>Protein Science</i> , 1997 , 6, 2203-17	6.3	75
92	Resolution and chemical formula identification of aromatic hydrocarbons and aromatic compounds containing sulfur, nitrogen, or oxygen in petroleum distillates and refinery streams. <i>Analytical Chemistry</i> , 1996 , 68, 46-71	7.8	122
91	Ion Cyclotron Resonance and Nuclear Magnetic Resonance Spectroscopies: Magnetic Partners for Elucidation of Molecular Structure and Reactivity. <i>Accounts of Chemical Research</i> , 1996 , 29, 307-316	24.3	32
90	Mass Spectrometry: Recent Advances and Future Directions. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 12897-12910		73
89	The early development of Fourier transform ion cyclotron resonance (FT-ICR) spectroscopy. <i>Journal of Mass Spectrometry</i> , 1996 , 31, 581-5	2.2	68
88	Advantages of High Magnetic Field for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 1996 , 10, 1819-1823	2.2	134
87	Electrospray ionization Fourier transform ion cyclotron resonance at 9.4 T. <i>Rapid Communications in Mass Spectrometry</i> , 1996 , 10, 1824-8	2.2	195
86	A high-performance modular data system for Fourier transform ion cyclotron resonance mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 1996 , 10, 1839-44	2.2	238
85	An external source 7 T Fourier transform ion cyclotron resonance mass spectrometer with electrostatic ion guide. <i>Rapid Communications in Mass Spectrometry</i> , 1996 , 10, 1845-9	2.2	14
84	Laser-induced fluorescence of Ba+ ions trapped and mass-selected in a Fourier transform ion cyclotron resonance mass spectrometer. <i>Rapid Communications in Mass Spectrometry</i> , 1996 , 10, 1850-4	2.2	14
83	Determination of ion magnetron radial distribution in Fourier transform ion cyclotron resonance mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 1996 , 10, 1855-9	2.2	6

82	Stacked-ring electrostatic ion guide. Journal of the American Society for Mass Spectrometry, 1996 , 7, 101	-6 .5	29
81	Stored waveform inverse Fourier transform (SWIFT) ion excitation in trapped-ion mass spectometry: Theory and applications. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1996 , 157-158, 5-37		282
80	Electrospray Ionization Fourier Transform Ion Cyclotron Resonance at 9.4 T 1996 , 10, 1824		4
79	Ion trajectories in an electrostatic ion guide for external ion source fourier transform ion cyclotron resonance mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 1995 , 6, 936-46	3.5	9
78	Ion traps for Fourier transform ion cyclotron resonance mass spectrometry: principles and design of geometric and electric configurations. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1995 , 146-147, 261-296		102
77	Filar ion cyclotron resonance ion trap: Spatially multiplexed dipolar and quadrupolar excitation for simultaneous ion axialization and detection. <i>Review of Scientific Instruments</i> , 1995 , 66, 63-66	1.7	7
76	Ultrahigh-resolution matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectra of peptides. <i>Journal of Mass Spectrometry</i> , 1995 , 30, 825-833	2.2	47
75	Magnitude-mode multiple-derivative spectra for resolution enhancement without loss in signal-to-noise ratio in Fourier transform spectroscopy. <i>Journal of Mass Spectrometry</i> , 1995 , 30, 1237-12	244 ²	12
74	Linearized dipolar excitation and detection and quadrupolarized axialization in a cylindrical ion cyclotron resonance ion trap. <i>Journal of Mass Spectrometry</i> , 1995 , 30, 1593-1598	2.2	6
73	Generation and detection of coherent magnetron motion in Fourier transform ion cyclotron resonance mass spectrometry. <i>Journal of Chemical Physics</i> , 1994 , 100, 2258-2266	3.9	16
72	Internal ion impact ionization for Fourier-transform ion cyclotron resonance. <i>Rapid Communications in Mass Spectrometry</i> , 1994 , 8, 14-21	2.2	
71	Wide-mass-range axialization for high-resolution Fourier-transform ion cyclotron resonance mass spectrometry of externally generated ions. <i>Rapid Communications in Mass Spectrometry</i> , 1994 , 8, 615-20) ^{2.2}	37
70	A two-electrode ion trap for Fourier transform ion cyclotron resonance mass spectrometry. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1994 , 137, 9-30		16
69	Linear excitation and detection in Fourier transform ion cyclotron resonance mass spectrometry. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1994 , 139, 169-189		29
68	Equilibrium space charge distribution in a quadrupole ion trap. <i>Journal of the American Society for Mass Spectrometry</i> , 1994 , 5, 64-71	3.5	59
67	Inert gas purgebox for Fourier transform ion cyclotron resonance mass spectrometry of air-sensitive solids. <i>Review of Scientific Instruments</i> , 1994 , 65, 612-616	1.7	4
66	Shrink-wrapping an ion cloud for high-performance Fourier transform ion cyclotron resonance mass spectrometry. <i>Chemical Reviews</i> , 1994 , 94, 2161-2182	68.1	108
65	Stored waveform inverse Fourier transform axial excitation/ejection for quadrupole ion trap mass spectrometry. <i>Analytical Chemistry</i> , 1993 , 65, 1288-94	7.8	74

64	Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry/mass spectrometry with stored-waveform ion radius modulation. <i>Journal of the American Chemical Society</i> , 1993 , 115, 7854	-7861	48
63	Experimental determination of the number of trapped ions, detection limit, and dynamic range in Fourier transform ion cyclotron resonance mass spectrometry. <i>Analytical Chemistry</i> , 1993 , 65, 135-140	7.8	89
62	Bloch equations applied to ion cyclotron resonance spectroscopy: Broadband interconversion between magnetron and cyclotron motion for ion axialization. <i>Journal of Chemical Physics</i> , 1993 , 98, 44	8 हे :449	13 ³⁷
61	Axial and radial ion cloud compression: coupling of magnetron and cyclotron motion to axial motion in a segmented cubic Fourier transform ion cyclotron resonance ion trap. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1993 , 124, 53-67		30
60	Masses of stable neon isotopes determined at parts per billion precision by Fourier transform ion cyclotron resonance mass spectrometry. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1993 , 128, 47-60		26
59	Harmonic enhancement of a detected ion cyclotron resonance signal by use of segmented detection electrodes. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1993 , 123, 41-47		18
58	Excitation modes for fourier transform-ion cyclotron resonance mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 1993 , 4, 433-52	3.5	90
57	High-frequency fourier transform ion cyclotron resonance mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 1993 , 4, 177-81	3.5	8
56	Analysis and elimination of systematic errors originating from coulomb mutual interaction and image charge in Fourier transform ion cyclotron resonance precise mass difference measurements. <i>Journal of the American Society for Mass Spectrometry</i> , 1993 , 4, 855-68	3.5	45
55	Multiply pulsed collision gas for ion axialization in Fourier-transform ion cyclotron resonance mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 1993 , 7, 857-60	2.2	27
54	An electrostatic ion guide for efficient transmission of low energy externally formed ions into a Fourier transform ion cyclotron resonance mass spectrometer. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1993 , 125, 135-143		27
53	Dyanmic ion trapping for Fourier-transform ion cyclotron resonance mass spectrometry: Simultaneous positive- and negative-ion detection. <i>Rapid Communications in Mass Spectrometry</i> , 1992 , 6, 166-172	2.2	34
52	Experimental evaluation of a hyperbolic ion trap for fourier transform ion cyclotron resonance mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 1992 , 3, 188-97	3.5	32
51	Quadrupolar excitation and collisional cooling for axialization and high pressure trapping of ions in Fourier transform ion cyclotron resonance mass spectrometry. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1992 , 120, 71-83		132
50	Fourier transform ion cyclotron resonance mass spectrometry: technique developments. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1992 , 118-119, 37-70		122
49	Structural investigation of helices II, III, and IV of B. megaterium 5S ribosomal RNA by molecular dynamics calculations. <i>Biopolymers</i> , 1992 , 32, 1263-70	2.2	2
48	Circularly polarized quadrature excitation for Fourier-transform ion cyclotron resonance mass spectrometry. <i>Chemical Physics Letters</i> , 1992 , 198, 143-148	2.5	13
47	Can Fourier transform mass spectral resolution be improved by detection at harmonic multiples of the fundamental ion cyclotron orbital frequency?. <i>International Journal of Mass Spectrometry and Mass Spectrometry and Journal of Mass Spectrometry and Mass Spectrome</i>		36

46	Ion-locked cyclotron resonance: a means for instantaneously changing ion cyclotron orbital radius. <i>Chemical Physics Letters</i> , 1991 , 181, 168-174	2.5	7	
45	Ammonia laser desorption/chemical ionization with ammonium bromide: Fourier transform ion cyclotron resonance mass spectrometry of aromatic hydrocarbons. <i>Journal of the American Society for Mass Spectrometry</i> , 1991 , 2, 299-304	3.5	5	
44	Pulse timing and optical interface between a neodymium: yttrium aluminum garnet laser and a Fourier transform ion cyclotron resonance mass spectrometer. <i>Rapid Communications in Mass Spectrometry</i> , 1991 , 5, 132-6	2.2	6	
43	Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer. <i>Review of Scientific Instruments</i> , 1991 , 62, 2612-2617	1.7	8	
42	Comprehensive theory of the Fourier transform ion cyclotron resonance signal for all ion trap geometries. <i>Journal of Chemical Physics</i> , 1991 , 94, 5341-5352	3.9	79	
41	Pure absorption-mode spectra from Bayesian maximum entropy analysis of ion cyclotron resonance time-domain signals. <i>Analytical Chemistry</i> , 1991 , 63, 551-60	7.8	16	
40	General theory of excitation in ion cyclotron resonance mass spectrometry. <i>Analytical Chemistry</i> , 1991 , 63, 2057-2061	7.8	58	
39	Observation of the doubly charged, gas-phase fullerene anions C602- and C702 <i>Journal of the American Chemical Society</i> , 1991 , 113, 6795-6798	16.4	146	
38	Fourier transform ion cyclotron resonance mass spectrometry: the teenage years. <i>Analytical Chemistry</i> , 1991 , 63, 215A-229A	7.8	163	
37	Laboratory-frame and rotating-frame ion trajectories in ion cyclotron resonance mass spectrometry. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1990 , 100, 323-346		49	
36	Theory of ion cyclotron resonance mass spectrometry: resonant excitation and radial ejection in orthorhombic and cylindrical ion traps. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1990 , 100, 347-379		81	
35	Fourier transform ion cyclotron resonance mass spectrometry 1990 , 225-278		64	
34	Bayesian versus Fourier spectral analysis of ion cyclotron resonance time-domain signals. <i>Analytical Chemistry</i> , 1990 , 62, 201-8	7.8	19	
33	Simple and accurate determination of ion translational energy in ion cyclotron resonance mass spectroscopy. <i>Journal of the American Chemical Society</i> , 1990 , 112, 1275-1277	16.4	48	
32	Elimination of z-ejection in Fourier transform ion cyclotron resonance mass spectrometry by radio frequency electric field shimming. <i>Analytical Chemistry</i> , 1990 , 62, 515-20	7.8	61	
31	Time-Domain (Interferogram) and Frequency-Domain (Absorption-Mode and Magnitude-Mode) Noise and Precision in Fourier Transform Spectrometry. <i>Applied Spectroscopy</i> , 1990 , 44, 766-775	3.1	22	
				ľ
30	Effect of Sampling Rate on Fourier Transform Spectra: Oversampling is Overrated. <i>Applied Spectroscopy</i> , 1990 , 44, 1111-1116	3.1	10	

28	Hartley transform ion cyclotron resonance mass spectrometry. <i>Analytical Chemistry</i> , 1989 , 61, 428-31	7.8	9
27	A "screened" electrostatic ion trap for enhanced mass resolution, mass accuracy, reproducibility, and upper mass limit in Fourier transform ion cyclotron resonance mass spectrometry. <i>Analytical Chemistry</i> , 1989 , 61, 1288-93	7.8	100
26	Dispersion vs. absorption (DISPA): A magic circle for spectroscopic line shape analysis. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1988 , 3, 261-275	3.8	16
25	High-resolution multiple-ion simultaneous monitoring by means of multiple-foldover Fourier transform ion cyclotron resonance mass spectrometry. <i>Analytical Chemistry</i> , 1988 , 60, 341-4	7.8	18
24	Effects of Noise, Time-Domain Damping, Zero-Filling and the FFT Algorithm on the E xact□ Interpolation of Fast Fourier Transform Spectra. <i>Applied Spectroscopy</i> , 1988 , 42, 715-721	3.1	33
23	Dispersion versus absorption (DISPA) method for automatic phasing of Fourier transform ion cyclotron resonance mass spectra. <i>Rapid Communications in Mass Spectrometry</i> , 1987 , 1, 33-7	2.2	33
22	Effect of time-domain dynamic range on stored waveform excitation for Fourier transform ion cyclotron resonance mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 1987 , 1, 39-42	2.2	15
21	Stored waveform simultaneous mass-selective ejection/excitation for Fourier transform ion cyclotron resonance mass spectrometry. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1987 , 79, 115-125		68
20	Effect of signal-to-noise ratio and number of data points upon precision in measurement of peak amplitude, position and width in fourier transform spectrometry. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1986 , 1, 51-58	3.8	56
19	Coulomb broadening in Fourier transform ion cyclotron resonance mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 1986, 68, 287-301		29
18	High-speed preparative-scale separation and purification of ribosomal 5S and 5.8S RNA's via Sephacryl S-300 gel filtration chromatography. <i>Preparative Biochemistry and Biotechnology</i> , 1986 , 16, 247-58		5
17	Clipped representations of fourier-transform ion-cyclotron resonance mass spectra. <i>Analytica Chimica Acta</i> , 1985 , 178, 27-41	6.6	14
16	Fourier transform ion cyclotron resonance mass spectrometry. <i>Accounts of Chemical Research</i> , 1985 , 18, 316-322	24.3	217
15	Tailored excitation for Fourier transform ion cyclotron mass spectrometry. <i>Journal of the American Chemical Society</i> , 1985 , 107, 7893-7897	16.4	582
14	Fourier transform ion cyclotron mass spectrometry using pseudo-ramdom-noise excitation. <i>Chemical Physics Letters</i> , 1984 , 108, 63-66	2.5	17
13	Ion cyclotron resonance excitatio/de-excitation: A basis for Stochastic fourier transform ion cyclotron mass spectrometry. <i>Chemical Physics Letters</i> , 1984 , 105, 233-236	2.5	63
12	Advantages of Transform Methods in Chemistry 1982 , 1-43		6
11	Theory of Fourier transform ion cyclotron resonance mass spectroscopy: Response to frequency-sweep excitation. <i>Journal of Chemical Physics</i> , 1980 , 73, 1581-1590	3.9	138

LIST OF PUBLICATIONS

10	Theoretical signal-to-noise ratio and mass resolution in Fourier transform ion cyclotron resonance mass spectrometry. <i>Analytical Chemistry</i> , 1979 , 51, 1710-1714	7.8	45
9	Relaxation and spectral line shape in Fourier transform ion resonance spectroscopy. <i>Journal of Chemical Physics</i> , 1979 , 71, 4434-4444	3.9	136
8	Convolution Fourier transform ion cyclotron resonance spectroscopy. <i>Chemical Physics Letters</i> , 1979 , 63, 515-518	2.5	24
7	Dispersion versus absorption: spectral line shape analysis for radiofrequency and microwave spectrometry. <i>Analytical Chemistry</i> , 1978 , 50, 756-763	7.8	56
6	Theory of Fourier transform ion cyclotron resonance mass spectroscopy. I. Fundamental equations and low-pressure line shape. <i>Journal of Chemical Physics</i> , 1976 , 64, 110-119	3.9	119
5	Selective-phase Ion Cyclotron Resonance Spectroscopy. Canadian Journal of Chemistry, 1974 , 52, 1997-	1999	77
4	Anisotropic reorientation and non-exponential nuclear magnetic relaxation. <i>Molecular Physics</i> , 1974 , 28, 113-129	1.7	15
3	Frequency-sweep fourier transform ion cyclotron resonance spectroscopy. <i>Chemical Physics Letters</i> , 1974 , 26, 489-490	2.5	295
2	Fourier transform ion cyclotron resonance spectroscopy. <i>Chemical Physics Letters</i> , 1974 , 25, 282-283	2.5	804
1	Improved Transistorization of Varian V-2100B Magnet Power Supply. <i>Review of Scientific</i> Instruments, 1973 , 44, 918-919	1.7	2