Ki-Joong Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2095501/publications.pdf

Version: 2024-02-01

37	1,057	20	32
papers	citations	h-index	g-index
37 all docs	37 docs citations	37 times ranked	1460 citing authors

#	Article	IF	CITATIONS
1	Metal–Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform. ACS Sensors, 2018, 3, 386-394.	7.8	134
2	High-rate synthesis of Cu–BTC metal–organic frameworks. Chemical Communications, 2013, 49, 11518.	4.1	127
3	Zeolitic imidazolate framework-coated acoustic sensors for room temperature detection of carbon dioxide and methane. Nanoscale, 2018, 10, 8075-8087.	5.6	84
4	Near-infrared absorption gas sensing with metal-organic framework on optical fibers. Sensors and Actuators B: Chemical, 2016, 232, 43-51.	7.8	61
5	Ultrashort Near-Infrared Fiber-Optic Sensors for Carbon Dioxide Detection. IEEE Sensors Journal, 2015, 15, 5327-5332.	4.7	49
6	Visible-light-sensitive Na-doped p-type flower-like ZnO photocatalysts synthesized via a continuous flow microreactor. RSC Advances, 2013, 3, 12702.	3.6	47
7	Metal-organic framework functionalized polymer coating for fiber optical methane sensors. Sensors and Actuators B: Chemical, 2020, 324, 128627.	7.8	43
8	Plasmonics-enhanced metal–organic framework nanoporous films for highly sensitive near-infrared absorption. Journal of Materials Chemistry C, 2015, 3, 2763-2767.	5.5	41
9	Visible-light-sensitive nanoscale Au–ZnO photocatalysts. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	35
10	Continuous Microwave-Assisted Gas–Liquid Segmented Flow Reactor for Controlled Nucleation and Growth of Nanocrystals. Crystal Growth and Design, 2014, 14, 5349-5355.	3.0	34
11	Alkylamine-Integrated Metal–Organic Framework-Based Waveguide Sensors for Efficient Detection of Carbon Dioxide from Humid Gas Streams. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33489-33496.	8.0	32
12	An 860 MHz Wireless Surface Acoustic Wave Sensor With a Metal-Organic Framework Sensing Layer for CO ₂ and CH ₄ . IEEE Sensors Journal, 2020, 20, 9740-9747.	4.7	31
13	Synthesis of colloidal PbSe nanoparticles using a microwave-assisted segmented flow reactor. Materials Letters, 2014, 128, 54-59.	2.6	30
14	Metal–organic framework thin films as versatile chemical sensing materials. Materials Advances, 2021, 2, 6169-6196.	5.4	30
15	State-of-the-art of methane sensing materials: A review and perspectives. TrAC - Trends in Analytical Chemistry, 2020, 125, 115820.	11.4	29
16	Centimeter-Scale Pillared-Layer Metal–Organic Framework Thin Films Mediated by Hydroxy Double Salt Intermediates for CO ₂ Sensor Applications. ACS Applied Materials & Diterfaces, 2021, 13, 2062-2071.	8.0	24
17	Self-cleaning, high transmission, near unity haze OTS/silica nanostructured glass. Journal of Materials Chemistry C, 2018, 6, 9191-9199.	5.5	23
18	Segmented Microfluidic Flow Reactors for Nanomaterial Synthesis. Nanomaterials, 2020, 10, 1421.	4.1	23

#	Article	IF	CITATIONS
19	Synthesis of High-Quality Mg-MOF-74 Thin Films <i>via</i> Vapor-Assisted Crystallization. ACS Applied Materials & Samp; Interfaces, 2021, 13, 35223-35231.	8.0	23
20	Rapid, Selective, Ambient Growth and Optimization of Copper Benzene-1,3,5-Tricarboxylate (Cu–BTC) Metal–Organic Framework Thin Films on a Conductive Metal Oxide. Crystal Growth and Design, 2018, 18, 2924-2931.	3.0	22
21	Plasmonic nanopatch array with integrated metal–organic framework for enhanced infrared absorption gas sensing. Nanotechnology, 2017, 28, 26LT01.	2.6	20
22	Scalably synthesized environmentally benign, aqueous-based binary nanoparticle inks for Cu ₂ ZnSn(S,Se) ₄ photovoltaic cells achieving over 9% efficiency. Sustainable Energy and Fuels, 2017, 1, 267-274.	4.9	19
23	Continuous, size and shape-control synthesis of hollow silica nanoparticles enabled by a microreactor-assisted rapid mixing process. Nanotechnology, 2017, 28, 235602.	2.6	16
24	Continuous synthesis of colloidal chalcopyrite copper indium diselenide nanocrystal inks. RSC Advances, 2014, 4, 16418-16424.	3.6	14
25	Conformal growth of copper sulfide thin films on highly textured surface via microreactor-assisted solution deposition. CrystEngComm, 2015, 17, 2827-2836.	2.6	13
26	Flexible nanograss with highest combination of transparency and haze for optoelectronic plastic substrates. Nanotechnology, 2018, 29, 42LT01.	2.6	10
27	Nanostructured copper sulfide thin film <i>via</i> a spatial successive ionic layer adsorption and reaction process showing significant surface-enhanced infrared absorption of CO ₂ . Journal of Materials Chemistry C, 2020, 8, 3069-3078.	5.5	9
28	Two-step continuous-flow synthesis of CulnSe ₂ nanoparticles in a solar microreactor. RSC Advances, 2014, 4, 13827-13830.	3.6	7
29	Characterization of Cotton Ball-like Au/ZnO Photocatalyst Synthesized in a Micro-Reactor. Micromachines, 2018, 9, 322.	2.9	6
30	Enhanced Guest@MOF Interaction via Stepwise Thermal Annealing: TCNQ@Cu ₃ (BTC) ₂ . Crystal Growth and Design, 2021, 21, 817-828.	3.0	5
31	In Situ Growth and Interlayer Modulation of Layered Double Hydroxide Thin Films from a Transparent Conducting Oxide Precursor. Crystal Growth and Design, 2021, 21, 1518-1526.	3.0	5
32	Synthesis and Quantum Metrology of Metal–Organic Framework-Coated Nanodiamonds Containing Nitrogen Vacancy Centers. Chemistry of Materials, 2021, 33, 6365-6373.	6.7	5
33	Real-Time Monitoring of Gas-Phase and Dissolved CO ₂ Using a Mixed-Matrix Composite Integrated Fiber Optic Sensor for Carbon Storage Application. Environmental Science & Eamp; Technology, 2022, 56, 10891-10903.	10.0	3
34	Growth kinetics of copper sulfide thin films by photochemical deposition. CrystEngComm, 2016, 18, 6748-6758.	2.6	2
35	Polymer/Metalâ^'Organic Framework Composite Sensors for Gas Detection. ECS Meeting Abstracts, 2019, , .	0.0	1
36	Gold catalysts supported on ZnO/Al2O3 for low-temperature CO oxidation. Research on Chemical Intermediates, 2011, 37, 1165-1172.	2.7	0

#	Article	lF	CITATIONS
37	Redox Active Molecule Induced Metal-Organic Framework Thin Film on Optical Fiber Towards Chemical Sensing of Carbon Dioxide. ECS Meeting Abstracts, 2019, , .	0.0	O