Anuj Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2095440/publications.pdf

Version: 2024-02-01

236925 223800 2,573 64 25 46 h-index citations g-index papers 64 64 64 1693 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Bimetallic metal–organic frameworks and MOF-derived composites: Recent progress on electro- and photoelectrocatalytic applications. Coordination Chemistry Reviews, 2022, 451, 214264.	18.8	203
2	Exploring the Synergistic Effect of Novel Niâ€Fe in 2D Bimetallic Metalâ€Organic Frameworks for Enhanced Electrochemical Reduction of CO ₂ . Advanced Materials Interfaces, 2022, 9, 2101505.	3.7	32
3	Iron-cation-coordinated cobalt-bridged-selenides nanorods for highly efficient photo/electrochemical water splitting. Applied Catalysis B: Environmental, 2022, 304, 120987.	20.2	119
4	Carbon Nanotubes: General Introduction. , 2022, , 1-13.		0
5	Metal–organic frameworks-based nanomaterials for nanogenerators: a mini review. International Nano Letters, 2022, 12, 215-221.	5.0	3
6	2D hybrid nanoarchitecture electrocatalysts., 2022,, 11-23.		0
7	Nanomaterials for electrochemical reduction of CO2: An introduction. , 2022, , 373-377.		1
8	Metal-organic frameworks for the electrocatalytic ORR and HER. , 2022, , 211-237.		4
9	Nanoelectrocatalysis: An introduction. , 2022, , 3-10.		O
10	A facile preparation of sulfur doped nickel–iron nanostructures with improved HER and supercapacitor performance. International Journal of Hydrogen Energy, 2022, 47, 7511-7521.	7.1	16
11	Polypyrrole and polyaniline-based membranes for fuel cell devices: A review. Surfaces and Interfaces, 2022, 29, 101738.	3.0	12
12	Covalent organic framework-based materials as electrocatalysts for fuel cells. , 2022, , 229-250.		1
13	Trimetallic metal–organic frameworks and derived materials for environmental remediation and electrochemical energy storage and conversion. Coordination Chemistry Reviews, 2022, 461, 214505.	18.8	95
14	Molecular MnN4-Complex immobilized on carbon black as efficient electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2022, 47, 17621-17629.	7.1	19
15	Introduction to electrochemical energy storage technologies. , 2022, , 3-10.		2
16	MOF-based nanostructures and nanomaterials for next-generation energy storage. , 2022, , 3-10.		2
17	MOF-based advanced nanomaterials for electrocatalysis applications., 2022,, 749-763.		1
18	Lithium metal anode. , 2022, , 489-497.		0

#	Article	IF	Citations
19	Covalent Organic Frameworks-based Nanocomposites for Oxygen reduction reaction. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2022, 102, 477-485.	1.6	2
20	Synthesis strategies and structural and electronic properties of MXenes-based nanomaterials for ORR: A mini review. Inorganic Chemistry Communication, 2022, 141, 109496.	3.9	9
21	A catalyst-free preparation of conjugated poly iron-phthalocyanine and its superior oxygen reduction reaction activity. Chemical Engineering Journal, 2022, 445, 136784.	12.7	33
22	Ct-DNA binding and antimicrobial studies of MnII and FeII macrocyclic complexes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2022, 102, 683-692.	1.6	3
23	Oxygenated P/N co-doped carbon for efficient 2e ^{â^'} oxygen reduction to H ₂ O ₂ . Journal of Materials Chemistry A, 2022, 10, 14355-14363.	10.3	22
24	Phyto-assisted Preparation of Fe $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 3 $<$ /sub $>$ Nanoflowers and Their Antimicrobial Studies. Nano LIFE, 2022, 12, .	0.9	1
25	Tailoring of electrocatalyst interactions at interfacial level to benchmark the oxygen reduction reaction. Coordination Chemistry Reviews, 2022, 469, 214669.	18.8	79
26	Construction of Dual-Atom Fe via Face-to-Face Assembly of Molecular Phthalocyanine for Superior Oxygen Reduction Reaction. Chemistry of Materials, 2022, 34, 5598-5606.	6.7	29
27	3D interconnected porous Mo-doped WO3@CdS hierarchical hollow heterostructures for efficient photoelectrochemical nitrogen reduction to ammonia. Applied Catalysis B: Environmental, 2022, 317, 121711.	20.2	75
28	Recent development on metal phthalocyanines based materials for energy conversion and storage applications. Coordination Chemistry Reviews, 2021, 431, 213678.	18.8	69
29	Nanostructured cathode materials in rechargeable batteries. , 2021, , 293-319.		2
30	Nanostructured anode materials in rechargeable batteries. , 2021, , 187-219.		5
31	Defective/graphitic synergy in a heteroatom-interlinked-triggered metal-free electrocatalyst for high-performance rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2021, 9, 18222-18230.	10.3	135
32	Synthesis of Nanosized Metal Sulfides Using Elemental Sulfur in Formamide: Implications for Energy Conversion and Optical Scenarios. ACS Applied Nano Materials, 2021, 4, 2357-2364.	5.0	6
33	Enhancing oxygen reduction reaction performance via CNTs/graphene supported iron protoporphyrin IX: A hybrid nanoarchitecture electrocatalyst. Diamond and Related Materials, 2021, 113, 108272.	3.9	54
34	SYNTHESIS, CHARACTERIZATION AND ORR ACTIVITY OF METAL-N4-NANOCOMPOSITES. Surface Review and Letters, 2021, 28, 2150051.	1.1	6
35	Synthesis, Characterization, Electrochemical and Antimicrobial Studies of Iron(II) and Nickel(II) Macrocyclic Complexes. Russian Journal of Electrochemistry, 2021, 57, 348-356.	0.9	12
36	Substituent effect on catalytic activity of Co phthalocyanines for oxygen reduction reactions. Inorganic Chemistry Communication, 2021, 127, 108518.	3.9	22

#	Article	IF	Citations
37	Different approaches in thin-layer chromatography for enantioresolution of acebutolol using colistin sulfate as chiral selector. Journal of Planar Chromatography - Modern TLC, 2021, 34, 211-215.	1.2	8
38	Advancement in Nanomaterials for Rapid Sensing, Diagnosis, and Prevention of COVID-19. Nano LIFE, 2021, 11, 2130007.	0.9	1
39	A novel CoN4-driven self-assembled molecular engineering for oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 26499-26506.	7.1	30
40	Redox chemistry of N4-Fe2+ in iron phthalocyanines for oxygen reduction reaction. Chinese Journal of Catalysis, 2021, 42, 1404-1412.	14.0	33
41	M-N-C-based single-atom catalysts for H2, O2 & D2 electrocatalysis: activity descriptors, active sites identification, challenges and prospects. Fuel, 2021, 304, 121420.	6.4	63
42	Molecular-MN4 vs atomically dispersed Mâ^'N4â^'C electrocatalysts for oxygen reduction reaction. Coordination Chemistry Reviews, 2021, 446, 214122.	18.8	88
43	The chemistry, recent advancements and activity descriptors for macrocycles based electrocatalysts in oxygen reduction reaction. Coordination Chemistry Reviews, 2020, 402, 213047.	18.8	78
44	A novel strategy for the synthesis of hard carbon spheres encapsulated with graphene networks as a low-cost and large-scalable anode material for fast sodium storage with an ultralong cycle life. Inorganic Chemistry Frontiers, 2020, 7, 402-410.	6.0	128
45	Design and synthesis of MnN4 macrocyclic complex for efficient oxygen reduction reaction electrocatalysis. Inorganic Chemistry Communication, 2020, 112, 107700.	3.9	31
46	High-Voltage and Ultrastable Aqueous Zinc–lodine Battery Enabled by N-Doped Carbon Materials: Revealing the Contributions of Nitrogen Configurations. ACS Sustainable Chemistry and Engineering, 2020, 8, 13769-13776.	6.7	134
47	Boosting oxygen reduction reaction activity by incorporating the iron phthalocyanine nanoparticles on carbon nanotubes network. Inorganic Chemistry Communication, 2020, 120, 108160.	3.9	50
48	Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring. Applied Catalysis B: Environmental, 2020, 274, 119091.	20.2	130
49	Assisting Atomic Dispersion of Fe in N-Doped Carbon by Aerosil for High-Efficiency Oxygen Reduction. ACS Applied Materials & ACS ACS Applied Materials & ACS Applied Materials & ACS	8.0	17
50	Phyto-Assisted Synthesis and Characterization of V2O5 Nanomaterial and their Electrochemical and Antimicrobial Investigations. Nano LIFE, 2020, 10, 2050003.	0.9	16
51	Stereochemical facets of clinical βâ€blockers: An overview. Chirality, 2020, 32, 722-735.	2.6	26
52	Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review. Materials Today Nano, 2020, 11, 100076.	4.6	154
53	Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery. Nano Research, 2020, 13, 1090-1099.	10.4	77
54	Development of a thin-layer chromatographic method for the enantioresolution of sotalol using levofloxacin as chiral selector. Journal of Planar Chromatography - Modern TLC, 2020, 33, 663-667.	1.2	7

#	Article	IF	CITATIONS
55	Promoting electrochemical conversion of CO2 to formate with rich oxygen vacancies in nanoporous tin oxides. Chinese Chemical Letters, 2019, 30, 2274-2278.	9.0	35
56	Synthesis, Electrochemical and Antimicrobial Studies of Me6-Dibenzotetraazamacrocyclic Complexes of Ni(II) and Cu(II) Metal Ions. Russian Journal of Electrochemistry, 2019, 55, 161-167.	0.9	12
57	Design and synthesis of Co ^{II} HMTAA-14/16 macrocycles and their nano-composites for oxygen reduction electrocatalysis. RSC Advances, 2019, 9, 13243-13248.	3.6	20
58	Recent Advances for MOFâ€Derived Carbonâ€Supported Singleâ€Atom Catalysts. Small Methods, 2019, 3, 1800471.	8.6	315
59	Synthesis and Electrochemical Studies of Hexamethyldibenzotetraaza N4-Macrocyclic Complexes of Ni(II) and Cu(II) Metal ions. Asian Journal of Chemistry, 2019, 31, 2116-2120.	0.3	1
60	Electrochemical studies of DNA interaction and antimicrobial activities of MnII, FeIII, CoII and NiII Schiff base tetraazamacrocyclic complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 176, 123-133.	3.9	31
61	Converting Polyvinyl Chloride Plastic Wastes to Carbonaceous Materials via Room-Temperature Dehalogenation for High-Performance Supercapacitor. ACS Applied Energy Materials, 0, , .	5.1	9
62	SYNTHESIS, ELECTROCHEMICAL, ANTIMICROBIAL AND THEORETICAL STUDIES OF FE AND NI MACROCYCLIC COMPLEXES. Surface Review and Letters, 0, , .	1.1	2
63	Synthesis, Electrochemical and Antibacterial Studies of Hexa-aza-macrocyclic Complexes of Ni(II) and Cu(II) lons. Nano LIFE, 0 , , .	0.9	1
64	Organocerium/Ce-Based Nanocomposites as Corrosion Inhibitors. ACS Symposium Series, 0, , 169-188.	0.5	2