
Khezrollah Khezri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/209544/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A grafting from approach to graft polystyrene chains at the surface of graphene nanolayers by RAFT polymerization: Various graft densities from hydroxyl groups. Applied Surface Science, 2016, 360, 373-382.	3.1	72
2	Polystyrene-grafted graphene nanoplatelets with various graft densities by atom transfer radical polymerization from the edge carboxyl groups. RSC Advances, 2014, 4, 24439-24452.	1.7	66
3	In situ atom transfer radical polymerization of styrene to in-plane functionalize graphene nanolayers: grafting through hydroxyl groups. Journal of Polymer Research, 2014, 21, 1.	1.2	50
4	Edgeâ€functionalized graphene nanoplatelets with polystyrene by atom transfer radical polymerization: grafting through carboxyl groups. Polymer International, 2014, 63, 1912-1923.	1.6	50
5	"Grafting through―approach for synthesis of polystyrene/silica aerogel nanocomposites by in situ reversible addition-fragmentation chain transfer polymerization. Journal of Sol-Gel Science and Technology, 2013, 66, 337-344.	1.1	43
6	Furfuryl alcohol functionalized graphene nanosheets for synthesis of high carbon yield novolak composites. Journal of Applied Polymer Science, 2014, 131, .	1.3	40
7	Kinetic study of styrene atom transfer radical polymerization from hydroxyl groups of graphene nanoplatelets: Heterogeneities in chains and graft densities. Polymer Engineering and Science, 2015, 55, 1720-1732.	1.5	40
8	Confinement effect of graphene nanoplatelets on atom transfer radical polymerization of styrene: grafting through hydroxyl groups. Iranian Polymer Journal (English Edition), 2015, 24, 51-62.	1.3	40
9	Synthesis of clayâ€dispersed poly(styreneâ€ <i>co</i> â€methyl methacrylate) nanocomposite via miniemulsion atom transfer radical polymerization: A reverse approach. Journal of Applied Polymer Science, 2012, 124, 2278-2286.	1.3	39
10	Encapsulation of organomodified montmorillonite with PMMA via in situ SR&NI ATRP in miniemulsion. Journal of Polymer Research, 2012, 19, 1.	1.2	36
11	Synthesis and characterization of exfoliated poly(styreneâ€ <i>co</i> â€methyl methacrylate) nanocomposite via miniemulsion atom transfer radical polymerization: an activators generated by electron transfer approach. Polymer Composites, 2011, 32, 1979-1987.	2.3	33
12	Polystyrene-silica aerogel nanocomposites by in situ simultaneous reverse and normal initiation technique for ATRP. Microporous and Mesoporous Materials, 2016, 228, 132-140.	2.2	33
13	Polystyrene-attached graphene nanolayers by reversible addition-fragmentation chain transfer polymerization: a grafting from epoxy groups with various densities. Journal of Polymer Research, 2016, 23, 1.	1.2	30
14	Nanoclayâ€encapsulated polystyrene microspheres by reverse atom transfer radical polymerization. Polymer Composites, 2012, 33, 990-998.	2.3	28
15	In situ atom transfer radical polymerization of styrene in the presence of nanoporous silica aerogel: Kinetic study and investigation of thermal properties. Journal of Polymer Research, 2013, 20, 1.	1.2	28
16	PMMA-grafted silica aerogel nanoparticles via in situ SR&NI ATRP: Grafting through approach. Microporous and Mesoporous Materials, 2015, 214, 70-79.	2.2	27
17	Synthesis of hybrid free and nanoporous silica aerogel-anchored polystyrene chains via in situ atom transfer radical polymerization. Polymer Composites, 2013, 34, 1648-1654.	2.3	23
18	A kinetics study on the <i>in situ</i> reversible addition–fragmentation chain transfer and free radical polymerization of styrene in presence of silica aerogel nanoporous particles. Designed Monomers and Polymers, 2014, 17, 245-254.	0.7	22

Khezrollah Khezri

#	Article	IF	CITATIONS
19	Polystyrene–mesoporous diatomite composites produced by in situ activators regenerated by electron transfer atom transfer radical polymerization. RSC Advances, 2016, 6, 109286-109295.	1.7	21
20	SR&NI atom transfer radical random copolymerization of styrene and butyl acrylate in the presence of MPS-functionalized silica aerogel nanoparticles. Journal of Thermal Analysis and Calorimetry, 2016, 126, 1261-1272.	2.0	21
21	Mesoporous diatomite-filled PMMA by in situ reverse atom transfer radical polymerization. Colloid and Polymer Science, 2017, 295, 247-257.	1.0	19
22	Effect of MCM-41 nanoparticles on ARGET ATRP of styrene: Investigating thermal properties. Journal of Composite Materials, 2015, 49, 1525-1535.	1.2	18
23	Synthesis of well-defined clay encapsulated poly(styrene-co-butyl acrylate) nanocomposite latexes via reverse atom transfer radical polymerization in miniemulsion. Journal of Polymer Engineering, 2012, 32, .	0.6	16
24	Reversible addition fragmentation chain transfer polymerization of styrene from the edge of graphene oxide nanolayers. Journal of Polymer Research, 2017, 24, 1.	1.2	16
25	Characterization of Diatomite Platelets and Its Application for In Situ Atom Transfer Radical Random Copolymerization of Styrene and Butyl Acrylate: Normal Approach. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 266-274.	1.9	16
26	Activators generated by electron transfer for atom transfer radical polymerization of styrene in the presence of mesoporous silica nanoparticles. Materials Research Bulletin, 2014, 59, 241-248.	2.7	14
27	Synthesis and Characterization of Polystyrene/Mesoporous Diatomite Composites via Activators Generated by Electron Transfer for Atom Transfer Radical Polymerization. Zeitschrift Fur Physikalische Chemie, 2017, 231, 1543-1558.	1.4	13
28	Reverse Atom Transfer Radical Polymerization of Styrene in the Presence of Functionalized Silica Aerogel Nanoparticles. Zeitschrift Fur Physikalische Chemie, 2016, 230, 1499-1518.	1.4	12
29	Polystyrene–organoclay nanocomposites produced by in situ activators regenerated by electron transfer for atom transfer radical polymerization. Journal of Polymer Engineering, 2012, 32, 235-243.	0.6	11
30	Polystyrene/mesoporous diatomite composites by in situ simultaneous reverse and normal initiation technique for atom transfer radical polymerization. Polymer Science - Series B, 2017, 59, 109-116.	0.3	11
31	Polystyrene-attached graphene oxide with different graft densities via reversible addition-fragmentation chain transfer polymerization and grafting through approach. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	11
32	Styrene and Methyl Methacrylate Random Copolymerization via AGET ATRP: Incorporation of Hydrophobic Silica Aerogel Nanoparticles. Advances in Polymer Technology, 2016, 35, 260-268.	0.8	10
33	Synthesis and Characterization of Poly (styrene-co-butyl acrylate)/Silica Aerogel Nanocomposites by in situ AGET ATRP: Investigating Thermal Properties. High Temperature Materials and Processes, 2017, 36, 955-962.	0.6	10
34	Well-defined PMMA/diatomite nanocomposites by in situ AGET ATRP: diatomite as an appropriate replacement for clay. Journal of Polymer Research, 2018, 25, 1.	1.2	10
35	INTRODUCTION OF A DOUBLE BOND CONTAINING MODIFIER ON THE SURFACE OF MCM-41 NANOPARTICLES: APPLICATION FOR SR&NI ATRP OF STYRENE. Nano, 2014, 09, 1450023.	0.5	9
36	Spherical mesoporous silica nanoparticles/tailor-made polystyrene nanocomposites by in situ reverse atom transfer radical polymerization. Polymer Science - Series B, 2014, 56, 909-918.	0.3	9

#	Article	IF	CITATIONS
37	Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization of Styrene in the Presence of Hydrophobically Modified Silica Aerogel Nanoparticles. Zeitschrift Fur Physikalische Chemie, 2016, 230, 111-129.	1.4	9
38	Reverse atom transfer radical random copolymerization of styrene and methyl methacrylate in the presence of diatomite nanoplatelets. Polymers for Advanced Technologies, 2018, 29, 424-432.	1.6	9
39	Poly(styrene-co-butyl acrylate)/mesoporous diatomaceous earth mineral nanocomposites by in situ AGET ATRP. Journal of Thermal Analysis and Calorimetry, 2018, 131, 2513-2521.	2.0	9
40	Effect of Mesoporous Diatomite Particles on the Kinetics of SR&NI ATRP of Styrene and Butyl Acrylate. Zeitschrift Fur Physikalische Chemie, 2018, 232, 471-487.	1.4	8
41	Investigating the Effect of Silica Aerogel Nanoparticles on the Kinetics of AGET ATRP of Methyl Methacrylate. Zeitschrift Fur Physikalische Chemie, 2019, 233, 393-411.	1.4	8
42	ATRP of Methyl Methacrylate in the Presence of HMDS-Modified Silica Aerogel: ARGET Approach. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 608-616.	1.9	8
43	Hyperbranched Poly(amidoamine)â€Grafted Graphene Oxide as a Multifunctional Curing Agent for Epoxyâ€Terminated Polyurethane Composites. ChemistrySelect, 2021, 6, 2692-2699.	0.7	8
44	Evaluation of the effect of hydrophobically modified silica aerogel on the ARGET ATRP of styrene and butyl acrylate. Microporous and Mesoporous Materials, 2019, 280, 236-242.	2.2	6
45	Investigation of the effect of mesoporous diatomaceous earth particles on RATRP of styrene and butyl acrylate. Journal of Thermoplastic Composite Materials, 2019, 32, 248-266.	2.6	6
46	A study on the kinetics and thermal properties of polystyrene/diatomite nanocomposites prepared via in situ ATRP. Journal of Thermoplastic Composite Materials, 2020, 33, 180-197.	2.6	6
47	A Study on the Properties of Poly (Styrene-co-Methyl Methacrylate)/Silica Aerogel Nanocomposites Prepared via in situ SR&NI ATRP. Acta Chimica Slovenica, 2018, 65, 998-1007.	0.2	5
48	Synthesis and Characterization of Silica Aerogel-Dispersed Random Poly(styrene-co-butyl acrylate) Nanocomposites by Atom Transfer Radical Copolymerization: A Reverse Approach. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 1189-1199.	1.9	3
49	Effect of HMDS-modified silica aerogel nanoparticles on ATRP of styrene and methyl methacrylate: Kinetics and thermal studies. Journal of Thermoplastic Composite Materials, 2019, , 089270571988167.	2.6	2
50	Silica aerogel-filled PMMA by in situ reverse atom transfer radical polymerization: kinetics and thermal studies. Journal of Thermal Analysis and Calorimetry, 2020, 140, 713-723.	2.0	2
51	SR&NI Atom Transfer Radical Random Copolymerization of Styrene and Methyl Methacrylate: Incorporation of Diatomite Platelets. Acta Chimica Slovenica, 2018, 65, 652-611.	0.2	2
52	Preparation of PMMA/mesoporous diatomite nanocomposites by in situ SR&NI ATRP. Journal of Thermal Analysis and Calorimetry, 2018, 132, 937-945.	2.0	1
53	Influence of mesoporous diatomite on atom transfer radical random copolymerization of styrene and methyl methacrylate: Kinetics and thermal studies. Journal of Thermoplastic Composite Materials, 2019, , 089270571985993.	2.6	1