Suvi Lappalainen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2095331/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Norovirus VLPs and rotavirus VP6 protein as combined vaccine for childhood gastroenteritis. Vaccine, 2011, 29, 8126-8133.	3.8	123
2	Trivalent Combination Vaccine Induces Broad Heterologous Immune Responses to Norovirus and Rotavirus in Mice. PLoS ONE, 2013, 8, e70409.	2.5	88
3	A comparison of immunogenicity of norovirus Gllâ€4 virusâ€like particles and Pâ€particles. Immunology, 2012, 135, 89-99.	4.4	83
4	Detection of human coronaviruses in children with acute gastroenteritis. Journal of Clinical Virology, 2010, 48, 27-30.	3.1	64
5	Immune responses elicited against rotavirus middle layer protein VP6 inhibit viral replication in vitro and in vivo. Human Vaccines and Immunotherapeutics, 2014, 10, 2039-2047.	3.3	43
6	Protection against live rotavirus challenge in mice induced by parenteral and mucosal delivery of VP6 subunit rotavirus vaccine. Archives of Virology, 2015, 160, 2075-2078.	2.1	43
7	Human bocaviruses are commonly found in stools of hospitalized children without causal association to acute gastroenteritis. European Journal of Pediatrics, 2014, 173, 1051-1057.	2.7	40
8	Human bocavirus types 1, 2 and 3 in acute gastroenteritis of childhood. Acta Paediatrica, International Journal of Paediatrics, 2012, 101, e405-10.	1.5	31
9	Comparative immunogenicity in mice of rotavirus VP6 tubular structures and virus-like particles. Human Vaccines and Immunotherapeutics, 2013, 9, 1991-2001.	3.3	31
10	Genotype Considerations for Virus-Like Particle-Based Bivalent Norovirus Vaccine Composition. Vaccine Journal, 2015, 22, 656-663.	3.1	31
11	Rotavirus gastroenteritis in Finnish children in 2006–2008, at the introduction of rotavirus vaccination. Scandinavian Journal of Infectious Diseases, 2011, 43, 58-63.	1.5	30
12	Rotavirus capsid VP6 protein acts as an adjuvant in vivo for norovirus virus-like particles in a combination vaccine. Human Vaccines and Immunotherapeutics, 2016, 12, 740-748.	3.3	30
13	Rotavirus Recombinant VP6 Nanotubes Act as an Immunomodulator and Delivery Vehicle for Norovirus Virus-Like Particles. Journal of Immunology Research, 2016, 2016, 1-13.	2.2	29
14	Noroviruses in children seen in a hospital for acute gastroenteritis in Finland. European Journal of Pediatrics, 2011, 170, 1413-1418.	2.7	28
15	Simultaneous presence of human herpesvirus 6 and adenovirus infections in intestinal intussusception of young children. Acta Paediatrica, International Journal of Paediatrics, 2012, 101, 663-670.	1.5	27
16	Commonly circulating human coronaviruses do not have a significant role in the etiology of gastrointestinal infections in hospitalized children. Journal of Clinical Virology, 2015, 62, 114-117.	3.1	22
17	A comparative study of the effect of UV and formalin inactivation on the stability and immunogenicity of a Coxsackievirus B1 vaccine. Vaccine, 2019, 37, 5962-5971.	3.8	19
18	Combination of three virus-derived nanoparticles as a vaccine against enteric pathogens; enterovirus, norovirus and rotavirus. Vaccine, 2019, 37, 7509-7518.	3.8	19

SUVI LAPPALAINEN

#	Article	IF	CITATIONS
19	Live baculovirus acts as a strong B and T cell adjuvant for monomeric and oligomeric protein antigens. Virology, 2017, 511, 114-122.	2.4	18
20	Formalin treatment increases the stability and immunogenicity of coxsackievirus B1 VLP vaccine. Antiviral Research, 2019, 171, 104595.	4.1	15
21	Modular vaccine platform based on the norovirus-like particle. Journal of Nanobiotechnology, 2021, 19, 25.	9.1	15
22	Simple and efficient ultrafiltration method for purification of rotavirus VP6 oligomeric proteins. Archives of Virology, 2016, 161, 3219-3223.	2.1	12
23	Rotavirus VP6 Adjuvant Effect on Norovirus GII.4 Virus-Like Particle Uptake and Presentation by Bone Marrow-Derived Dendritic Cells In Vitro and In Vivo. Journal of Immunology Research, 2020, 2020, 1-14.	2.2	10
24	Rotavirus vaccination and infection induce VP6â€specific IgA responses. Journal of Medical Virology, 2017, 89, 239-245.	5.0	8
25	Parenterally Administered Norovirus GII.4 Virus-Like Particle Vaccine Formulated with Aluminum Hydroxide or Monophosphoryl Lipid A Adjuvants Induces Systemic but Not Mucosal Immune Responses in Mice. Journal of Immunology Research, 2018, 2018, 1-8.	2.2	8
26	Antigenicity and immunogenicity of HA2 and M2e influenza virus antigens conjugated to norovirus-like, VP1 capsid-based particles by the SpyTag/SpyCatcher technology. Virology, 2022, 566, 89-97.	2.4	8
27	Intradermal and intranasal immunizations with oligomeric middle layer rotavirus VP6 induce Th1, Th2 and Th17â€T cell subsets and CD4 + T lymphocytes with cytotoxic potential. Antiviral Research, 2018, 157, 1-8.	4.1	7
28	Rotavirus Inner Capsid VP6 Acts as an Adjuvant in Formulations with Particulate Antigens Only. Vaccines, 2020, 8, 365.	4.4	7
29	Functionality and avidity of norovirus-specific antibodies and T cells induced by GII.4 virus-like particles alone or co-administered with different genotypes. Vaccine, 2018, 36, 484-490.	3.8	6
30	Internalization and antigen presentation by mouse dendritic cells of rotavirus VP6 preparations differing in nanostructure. Molecular Immunology, 2020, 123, 26-31.	2.2	6
31	Expression of influenza A virus-derived peptides on a rotavirus VP6-based delivery platform. Archives of Virology, 2021, 166, 213-217.	2.1	4
32	Fusion Protein of Rotavirus VP6 and SARS-CoV-2 Receptor Binding Domain Induces T Cell Responses. Vaccines, 2021, 9, 733.	4.4	4