
Katsunori Sugimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2095203/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature, 2003, 424, 1078-1083.	27.8	614
2	G1-specific cyclins of S. cerevisiae: Cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase. Cell, 1990, 62, 225-237.	28.9	479
3	Primary structure of porcine cardiac muscarinic acetylcholine receptor deduced from the cDNA sequence. FEBS Letters, 1986, 209, 367-372.	2.8	335
4	A cyclin B homolog in S. cerevisiae: Chronic activation of the Cdc28 protein kinase by cyclin prevents exit from mitosis. Cell, 1991, 65, 163-174.	28.9	333
5	Primary structure of the α-subunit of transducin and its relationship to ras proteins. Nature, 1985, 315, 242-245.	27.8	307
6	Recruitment of Mec1 and Ddc1 Checkpoint Proteins to Double-Strand Breaks Through Distinct Mechanisms. Science, 2001, 294, 867-870.	12.6	246
7	ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. Genes and Development, 2003, 17, 1957-1962.	5.9	244
8	Primary structure of the β-subunit of bovine transducin deduced from the cDNA sequence. FEBS Letters, 1985, 191, 235-240.	2.8	153
9	Role of a Complex Containing Rad17, Mec3, and Ddc1 in the Yeast DNA Damage Checkpoint Pathway. Molecular and Cellular Biology, 1999, 19, 1136-1143.	2.3	120
10	Rif1 and Rif2 Inhibit Localization of Tel1 to DNA Ends. Molecular Cell, 2009, 33, 312-322.	9.7	116
11	Pie1, a Protein Interacting with Mec1, Controls Cell Growth and Checkpoint Responses in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2001, 21, 755-764.	2.3	113
12	Requirement of the Mre11 Complex and Exonuclease 1 for Activation of the Mec1 Signaling Pathway. Molecular and Cellular Biology, 2004, 24, 10016-10025.	2.3	106
13	Chl12 (Ctf18) Forms a Novel Replication Factor C-Related Complex and Functions Redundantly with Rad24 in the DNA Replication Checkpoint Pathway. Molecular and Cellular Biology, 2001, 21, 5838-5845.	2.3	105
14	Rfc5, in Cooperation with Rad24, Controls DNA Damage Checkpoints throughout the Cell Cycle in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2000, 20, 5888-5896.	2.3	97
15	Clamp and clamp loader structures of the human checkpoint protein complexes, Rad9-1-1 and Rad17-RFC. Genes To Cells, 2002, 7, 861-868.	1.2	81
16	Functional and Physical Interaction between Rad24 and Rfc5 in the Yeast Checkpoint Pathways. Molecular and Cellular Biology, 1998, 18, 5485-5491.	2.3	79
17	A Proteomics Approach to Identify Proliferating Cell Nuclear Antigen (PCNA)-binding Proteins in Human Cell Lysates. Journal of Biological Chemistry, 2002, 277, 40362-40367.	3.4	78
18	ATR Homolog Mec1 Controls Association of DNA Polymerase ζ-Rev1 Complex with Regions near a Double-Strand Break. Current Biology, 2006, 16, 586-590.	3.9	77

KATSUNORI SUGIMOTO

#	Article	IF	CITATIONS
19	The ATM-related Tel1 protein of Saccharomyces cerevisiae controls a checkpoint response following phleomycin treatment. Nucleic Acids Research, 2003, 31, 1715-1724.	14.5	53
20	Association of Rad9 with Double-Strand Breaks through a Mec1-Dependent Mechanism. Molecular and Cellular Biology, 2004, 24, 3277-3285.	2.3	50
21	Role of the C Terminus of Mec1 Checkpoint Kinase in Its Localization to Sites of DNA Damage. Molecular Biology of the Cell, 2005, 16, 5227-5235.	2.1	47
22	HYS2, an essential gene required for DNA replication inSaccharomyces cerevisiae. Nucleic Acids Research, 1995, 23, 3493-3500.	14.5	46
23	Cdc13 Telomere Capping Decreases Mec1 Association but Does Not Affect Tel1 Association with DNA Ends. Molecular Biology of the Cell, 2007, 18, 2026-2036.	2.1	45
24	Activation of ATR-related protein kinase upon DNA damage recognition. Current Genetics, 2020, 66, 327-333.	1.7	39
25	The reconstituted human Chl12-RFC complex functions as a second PCNA loader. Genes To Cells, 2004, 9, 279-290.	1.2	38
26	Branching the Tel2 pathway for exact fit on phosphatidylinositol 3-kinase-related kinases. Current Genetics, 2018, 64, 965-970.	1.7	34
27	Ddc2 Mediates Mec1 Activation through a Ddc1- or Dpb11-Independent Mechanism. PLoS Genetics, 2014, 10, e1004136.	3.5	25
28	Activation of Protein Kinase Tel1 through Recognition of Protein-Bound DNA Ends. Molecular and Cellular Biology, 2011, 31, 1959-1971.	2.3	24
29	Dosage suppressors of the dominant G1 cyclin mutantCLN3-2: Identification of a yeast gene encoding a putative RNA/ssDNA binding protein. Molecular Genetics and Genomics, 1995, 248, 712-718.	2.4	17
30	Subtelomere-binding protein Tbf1 and telomere-binding protein Rap1 collaborate to inhibit localization of the Mre11 complex to DNA ends in budding yeast. Molecular Biology of the Cell, 2012, 23, 347-359.	2.1	17
31	Requirement of the FATC domain of protein kinase Tel1 for localization to DNA ends and target protein recognition. Molecular Biology of the Cell, 2015, 26, 3480-3488.	2.1	17
32	Ddc2ATRIP promotes Mec1ATR activation at RPA-ssDNA tracts. PLoS Genetics, 2019, 15, e1008294.	3.5	15
33	Xenopus cyclin A1 can associate with Cdc28 in budding yeast, causing cell-cycle arrest with an abnormal distribution of nuclear DNA. Genes To Cells, 1997, 2, 329-343.	1.2	13
34	Two separate pathways regulate protein stability of ATM/ATR-related protein kinases Mec1 and Tel1 in budding yeast. PLoS Genetics, 2017, 13, e1006873.	3.5	13
35	Binding of Multiple Rap1 Proteins Stimulates Chromosome Breakage Induction during DNA Replication. PLoS Genetics, 2015, 11, e1005283.	3.5	12
36	Role of budding yeast Rad18 in repair of HO-induced double-strand breaks. DNA Repair, 2009, 8, 51-59.	2.8	7

#	Article	IF	CITATIONS
37	Getting to grips with circular chromosomes. ELife, 2020, 9, .	6.0	1