Yongmao Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2095148/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical Kinetics of the Li[Li _{0.23} Co _{0.3} Mn _{0.47}]O ₂ Cathode Material Studied by GITT and EIS. Journal of Physical Chemistry C, 2010, 114, 22751-22757.	3.1	285
2	Stability and electronic properties of two-dimensional silicene and germanene on graphene. Physical Review B, 2013, 88, .	3.2	173
3	NASICON-Type Mg _{0.5} Ti ₂ (PO ₄) ₃ Negative Electrode Material Exhibits Different Electrochemical Energy Storage Mechanisms in Na-Ion and Li-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 4709-4718.	8.0	47
4	First-Principles Calculations on the LiMSO4F/MSO4F (M = Fe, Co, and Ni) Systems. Journal of Physical Chemistry C, 2011, 115, 7032-7037.	3.1	32
5	Two-Dimensional V ₂ N MXene Monolayer as a High-Capacity Anode Material for Lithium-Ion Batteries and Beyond: First-Principles Calculations. ACS Omega, 2022, 7, 17756-17764.	3.5	18
6	Crystal structures of transition metal pernitrides predicted from first principles. RSC Advances, 2018, 8, 36412-36421.	3.6	15
7	Structural phase transition and bonding properties of high-pressure polymeric CaN3. RSC Advances, 2018, 8, 4314-4320.	3.6	14
8	Understanding the Hydrogen-Bonded Clusters of Ammonia (NH ₃) <i>_n</i> (<i>n</i> = 3–6): Insights from the Electronic Structure Theory. ACS Omega, 2020, 5, 31724-31729.	3.5	10
9	The Anchoring Effect of 2D Graphdiyne Materials for Lithium–Sulfur Batteries. ACS Omega, 2020, 5, 13424-13429.	3.5	10
10	Pressure-induced phase transformation and magnetism transition in BaRuO3: A first-principles study. Solid State Sciences, 2011, 13, 350-355.	3.2	9
11	Charge disproportionation in AlV2O4: A first-principles study. Journal of Alloys and Compounds, 2010, 505, L23-L26.	5.5	8
12	Prediction of the phase transition from ferromagnetic perovskite to non-magnetic post-perovskite in SrRuO3 : A first-principles study. Solid State Communications, 2011, 151, 798-801.	1.9	5
13	A low-cost and energy-saving preparation method for silicon derived from rice husks and lithium ion battery applications. Materials Research Express, 2019, 6, 045505.	1.6	2