Jürgen Titschack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2095077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Age constraints on the origin and growth history of a deep-water coral mound in the northeast Atlantic drilled during Integrated Ocean Drilling Program Expedition 307. Geology, 2007, 35, 1051.	4.4	124
2	Carbonate budget of a cold-water coral mound (Challenger Mound, IODP Exp. 307). Marine Geology, 2009, 259, 36-46.	2.1	69
3	Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature, 2020, 580, 81-86.	27.8	69
4	Effects of a deep-sea mining experiment on seafloor microbial communities and functions after 26 years. Science Advances, 2020, 6, eaaz5922.	10.3	64
5	Ice-rafting from the British–Irish ice sheet since the earliest Pleistocene (2.6 million years ago): implications for long-term mid-latitudinal ice-sheet growth in the North Atlantic region. Quaternary Science Reviews, 2012, 44, 229-240.	3.0	63
6	The giant Mauritanian cold-water coral mound province: Oxygen control on coral mound formation. Quaternary Science Reviews, 2018, 185, 135-152.	3.0	63
7	Aggradation and carbonate accumulation of Holocene Norwegian coldâ€water coral reefs. Sedimentology, 2015, 62, 1873-1898.	3.1	54
8	From sediment to rock: diagenetic processes of hardground formation in deep-water carbonate mounds of the NE Atlantic. Facies, 2006, 52, 183-208.	1.4	49
9	Magnesium quantification in calcites [(Ca,Mg)CO3] by Rietveld-based XRD analysis: Revisiting a well-established method. American Mineralogist, 2011, 96, 1028-1038.	1.9	46
10	Palaeoecology, taphonomy, and preservation of a lower Pliocene shell bed (coquina) from a volcanic oceanic island (Santa Maria Island, Azores). Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430, 57-73.	2.3	44
11	Cold-water coral carbonate mounds as unique palaeo-archives: the Plio-Pleistocene Challenger Mound record (NE Atlantic). Quaternary Science Reviews, 2013, 73, 14-30.	3.0	43
12	Plio-Pleistocene cliff-bound, wedge-shaped, warm-temperate carbonate deposits from Rhodes (Greece): Sedimentology and facies. Sedimentary Geology, 2005, 180, 29-56.	2.1	39
13	Sedimentary evolution of a Late Pleistocene temperate red algal reef (Coralligène) on Rhodes, Greece: correlation with global seaâ€level fluctuations. Sedimentology, 2008, 55, 1747-1776.	3.1	39
14	The 2.6 Ma depositional sequence from the Challenger cold-water coral carbonate mound (IODP Exp.) Tj ETQq0 0 260-277.	0 rgBT /0 2.1	verlock 10 T 39
15	Mediterranean coldâ€water corals – an important regional carbonate factory?. Depositional Record, 2016, 2, 74-96.	1.7	39
16	Cold-water coral reefs thriving under hypoxia. Coral Reefs, 2020, 39, 853-859.	2.2	36
17	The Fate of Cold-Water Corals in a Changing World: A Geological Perspective. Frontiers in Marine Science, 2019, 6, .	2.5	34
18	Coral mound development at the Campeche cold-water coral province, southern Gulf of Mexico: Implications of Antarctic Intermediate Water increased influence during interglacials. Marine Geology, 2017, 392, 53-65.	2.1	32

Jürgen Titschack

#	Article	IF	CITATIONS
19	Atlantic Water advection vs. glacier dynamics in northern Spitsbergen since early deglaciation. Climate of the Past, 2017, 13, 1717-1749.	3.4	31
20	Cold-water coral mounds in the southern Alboran Sea (western Mediterranean Sea): Internal waves as an important driver for mound formation since the last deglaciation. Marine Geology, 2019, 412, 1-18.	2.1	31
21	The giant oyster Hyotissa hyotis from the northern Red Sea as a decadal-scale archive for seasonal environmental fluctuations in coral reef habitats. Coral Reefs, 2010, 29, 1061-1075.	2.2	30
22	Record of a tectonically-controlled regression captured by changes in carbonate skeletal associations on a structured island shelf (mid-Pleistocene, Rhodes, Greece). Sedimentary Geology, 2013, 283, 15-33.	2.1	28
23	Orbital- and millennial-scale Antarctic Circumpolar Current variability in Drake Passage over the past 140,000 years. Nature Communications, 2021, 12, 3948.	12.8	28
24	Contourite drift evolution and related coral growth in the eastern Gulf of Mexico and its gateways. International Journal of Earth Sciences, 2010, 99, 191-206.	1.8	27
25	Framework-Forming Scleractinian Cold-Water Corals Through Space and Time: A Late Quaternary North Atlantic Perspective. , 2017, , 699-732.		26
26	In situ growth and bioerosion rates of <i>Lophelia pertusa</i> in a Norwegian fjord and open shelf cold-water coral habitat. PeerJ, 2019, 7, e7586.	2.0	26
27	200,000†years of monsoonal history recorded on the lower Bengal Fan - strong response to insolation forcing. Global and Planetary Change, 2018, 166, 107-119.	3.5	25
28	Thousands of cold-water coral mounds along the Moroccan Atlantic continental margin: Distribution and morphometry. Marine Geology, 2019, 411, 51-61.	2.1	25
29	Spondylus gaederopus: A new Mediterranean climate archive — Based on high-resolution oxygen and carbon isotope analyses. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 291, 228-238.	2.3	24
30	Major environmental drivers determining life and death of cold-water corals through time. PLoS Biology, 2022, 20, e3001628.	5.6	24
31	Solenosmilia variabilis-bearing cold-water coral mounds off Brazil. Coral Reefs, 2020, 39, 69-83.	2.2	23
32	Long-term macrobioerosion in the Mediterranean Sea assessed by micro-computed tomography. Biogeosciences, 2016, 13, 3461-3474.	3.3	21
33	Deglacial upslope shift of NE Atlantic intermediate waters controlled slope erosion and cold-water coral mound formation (Porcupine Seabight, Irish margin). Quaternary Science Reviews, 2020, 237, 106310.	3.0	21
34	Growth, deposition, and facies of Pleistocene bathyal coral communities from Rhodes, Greece. , 2005, , 41-59.		21
35	Oxygen and stable carbon isotopes from a nautiloid from the middle Pennsylvanian (Late) Tj ETQq1 1 0.784314 signals versus diagenesis. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 319-320, 1-15.	rgBT /Ove 2.3	rlock 10 Tf 50 20
36	Testing the applicability of a benthic foraminiferal-based transfer function for the reconstruction of paleowater depth changes in Rhodes (Greece) during the early Pleistocene. PLoS ONE, 2017, 12, e0188447.	2.5	19

Jürgen Titschack

#	Article	IF	CITATIONS
37	Mid-Holocene extinction of cold-water corals on the Namibian shelf steered by the Benguela oxygen minimum zone. Geology, 2019, 47, 1185-1188.	4.4	19
38	Bacterial communities in temperate and polar coastal sands are seasonally stable. ISME Communications, 2021, 1, .	4.2	18
39	Sedimentation patterns on a cold-water coral mound off Mauritania. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 99, 307-315.	1.4	17
40	Exploring computed tomography in ichnological analysis of cores from modern marine sediments. Scientific Reports, 2020, 10, 201.	3.3	17
41	Framework-Forming Scleractinian Cold-Water Corals Through Space and Time: A Late Quaternary North Atlantic Perspective. , 2015, , 1-34.		17
42	Classical and new bioerosion trace fossils in Cretaceous belemnite guards characterised via micro-CT. Fossil Record, 2017, 20, 173-199.	1.4	17
43	The sediment composition and predictive mapping of facies on the Propeller Mound—A cold-water coral mound (Porcupine Seabight, NE Atlantic). Continental Shelf Research, 2010, 30, 1814-1829.	1.8	16
44	Wahlenbergfjord, eastern Svalbard: a glacierâ€surrounded fjord reflecting regional hydrographic variability during the Holocene?. Boreas, 2018, 47, 1003-1021.	2.4	15
45	Two new species of erect Bryozoa (Gymnolaemata: Cheilostomata) andÂthe application of non-destructive imaging methods for quantitative taxonomy. Zootaxa, 2015, 4020, 81-100.	0.5	14
46	The Importance of Ecological Accommodation Space and Sediment Supply for Cold-Water Coral Mound Formation, a Case Study From the Western Mediterranean Sea. Frontiers in Marine Science, 2021, 8, .	2.5	13
47	Aragonite loss in a coldâ€water coral mound: mechanisms and implications. Sedimentology, 2011, 58, 670-690.	3.1	12
48	The Marine Fossil Record at Santa Maria Island (Azores). Active Volcanoes of the World, 2018, , 155-196.	1.4	12
49	Glacio-eustatic variations and sapropel events as main controls on the Middle Pleistocene-Holocene evolution of the Cabliers Coral Mound Province (W Mediterranean). Quaternary Science Reviews, 2021, 253, 106783.	3.0	12
50	Madrepora oculata forms large frameworks in hypoxic waters off Angola (SE Atlantic). Scientific Reports, 2021, 11, 15170.	3.3	12
51	Ambient occlusion – A powerful algorithm to segment shell and skeletal intrapores in computed tomography data. Computers and Geosciences, 2018, 115, 75-87.	4.2	11
52	Paleo-ecologic and neotectonic evolution of a marine depositional environment in SE Rhodes (Greece) during the early Pleistocene. Quaternary Science Reviews, 2019, 213, 120-132.	3.0	11
53	Post-LGM upward shift of the Mediterranean Outflow Water recorded in a contourite drift off NW Spain. Marine Geology, 2019, 407, 334-349.	2.1	11
54	Ungrazed salt marsh has well connected soil pores and less dense sediment compared with grazed salt marsh: a CT scanning study. Estuarine, Coastal and Shelf Science, 2020, 245, 106987.	2.1	10

JüRGEN TITSCHACK

#	Article	IF	CITATIONS
55	Dating and Characterization of Polymorphic Transformation of Aragonite to Calcite in Pleistocene Bivalves from Rhodes (Greece) by Combined Shell Microstructure, Stable Isotope, and Electron Spin Resonance Study. Journal of Sedimentary Research, 2009, 79, 332-346.	1.6	9
56	Monsoonal forcing of cold-water coral growth off southeastern Brazil during the past 160 kyr. Biogeosciences, 2020, 17, 5883-5908.	3.3	7
57	Multiscale mechanical consequences of ocean acidification for cold-water corals. Scientific Reports, 2022, 12, 8052.	3.3	6
58	Linking sedimentary sulfur and iron biogeochemistry to growth patterns of a coldâ€water coral mound in the Porcupine Basin, S.W. Ireland (IODP Expedition 307). Geobiology, 2015, 13, 424-442.	2.4	5
59	A Diverse Vertebrate Ichnofauna from a Quaternary Eolian Oolite, Rhodes, Greece. , 2007, , .		4
60	10 Bathyal Corals Within the Aegean Sea and the Adjacent Hellenic Trench. Coral Reefs of the World, 2019, , 85-94.	0.7	1
61	Reef-building Pacific oysters record seasonal variations in water mass-properties of tidal basins from the Central Wadden Sea (North Sea). Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 577, 110534	2.3	1