Xiaobo Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2095031/publications.pdf Version: 2024-02-01

XIAORO YANC

#	Article	IF	CITATIONS
1	Silicalite-1 formation in acidic medium: Synthesis conditions and physicochemical properties. Microporous and Mesoporous Materials, 2022, 329, 111537.	4.4	14
2	Hydrothermal crystallization of clathrasils in acidic medium: Energetic aspects. Microporous and Mesoporous Materials, 2022, 333, 111728.	4.4	10
3	One-pot synthesis of hierarchical MnCu-SSZ-13 catalyst with excellent NH3-SCR activity at low temperatures. Microporous and Mesoporous Materials, 2022, 333, 111720.	4.4	12
4	Acidic medium synthesis of zeolites – an avenue to control the structure-directing power of organic templates. Dalton Transactions, 2022, 51, 11499-11506.	3.3	8
5	A highly active VO -MnO /CeO2 for selective catalytic reduction of NO: The balance between redox property and surface acidity. Journal of Rare Earths, 2021, 39, 1370-1381.	4.8	9
6	Cu-IM-5 as the Catalyst for Selective Catalytic Reduction of NOx with NH3: Role of Cu Species and Reaction Mechanism. Catalysts, 2021, 11, 221.	3.5	8
7	Enhanced hydrothermal stability of Cu/SSZ-39 with increasing Cu contents, and the mechanism of selective catalytic reduction of NO. Microporous and Mesoporous Materials, 2021, 320, 111060.	4.4	21
8	Biomineralization at the Molecular Level: Amino Acid-Assisted Crystallization of Zeotype AlPO ₄ ·1.5H ₂ O–H3. Crystal Growth and Design, 2021, 21, 7298-7305.	3.0	4
9	Yolkâ~'shell Prussian blue analogues hierarchical microboxes: Controllably exposing active sites toward enhanced cathode performance for lithium ion batteries. Electrochimica Acta, 2019, 319, 237-244.	5.2	21
10	APTES-functionalized Fe 3 O 4 microspheres supported Cu atom-clusters with superior catalytic activity towards 4-nitrophenol reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 547, 28-36.	4.7	36
11	A composite material with CeO2-ZrO2 nanocrystallines embedded in SiO2 matrices and its enhanced thermal stability and oxygen storage capacity. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	2
12	High silica zeolite Phi, a CHA type zeolite with ABC-D6R stacking faults. Microporous and Mesoporous Materials, 2017, 248, 129-138.	4.4	11
13	Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy and Environmental Science, 2011, 4, 793-804.	30.8	417
14	Characterization of catalysts in their active state by adsorption microcalorimetry: Experimental design and application to sulfated zirconia. Journal of Catalysis, 2010, 269, 351-358.	6.2	21
15	An unusual hydrothermal phase transformation of quartz-type gallium phosphate into zeotype GaPO4-LTA and backwards. Microporous and Mesoporous Materials, 2008, 112, 637-640.	4.4	2
16	Solvothermal synthesis of germanosilicate-sodalite and silica-sodalite: Effects of water, germanium and fluoride. Microporous and Mesoporous Materials, 2007, 100, 95-102.	4.4	22
17	Surface barriers on nanoporous particles: A new method of their quantitation by PFG NMR. Microporous and Mesoporous Materials, 2007, 104, 89-96.	4.4	25
18	Exploring the surface permeability of nanoporous particles by pulsed field gradient NMR. Journal of Magnetic Resonance, 2007, 185, 300-307.	2.1	23

XIAOBO YANG

#	Article	IF	CITATIONS
19	Revision of Charnell's procedure towards the synthesis of large and uniform crystals of zeolites A and X. Microporous and Mesoporous Materials, 2006, 90, 53-61.	4.4	33
20	n-Butane Isomerization Catalyzed by Sulfated Zirconia Nanocrystals Supported on Silica or γ-Alumina. Catalysis Letters, 2006, 106, 195-203.	2.6	10
21	Synthesis and crystal structure of tetramethylammonium fluoride octadecasil. Materials Research Bulletin, 2006, 41, 54-66.	5.2	22
22	Propene Adsorption Sites in Zeolite ITQ-12:Â A Combined Synchrotron X-ray and Neutron Diffraction Study. Journal of Physical Chemistry B, 2005, 109, 7894-7899.	2.6	15
23	ITQ-12:Â A Zeolite Having Temperature Dependent Adsorption Selectivity and Potential for Propene Separation. Journal of Physical Chemistry B, 2004, 108, 11044-11048.	2.6	53
24	Synthesis and Crystal Structure of As-Synthesized and Calcined Pure Silica Zeolite ITQ-12. Journal of the American Chemical Society, 2004, 126, 10403-10409.	13.7	62
25	Mechanical stress induced activity and phase composition changes inÂsulfated zirconia catalysts. Journal of Catalysis, 2003, 217, 487-490.	6.2	16
26	Sulfated Zirconia with Ordered Mesopores as an Active Catalyst for n-Butane Isomerization. Catalysis Letters, 2002, 81, 25-31.	2.6	52
27	Synthesis of microporous titanosilicate ETS-10 with TiF4 or TiO2. Microporous and Mesoporous Materials, 2001, 46, 1-11.	4.4	73
28	Enantioselective hydrogenation on zeolite-encapsulated chiral palladium–salen complexes. Microporous and Mesoporous Materials, 2000, 35-36, 137-142.	4.4	19
29	Liquid-phase hydrogenation of 1,5-cyclooctadiene on zeolite-encapsulated noble metal–salen complexes. Microporous and Mesoporous Materials, 1998, 22, 457-464.	4.4	33
30	Synthesis of adamantane on zeolite catalysts. Chinese Journal of Chemistry, 1994, 12, 52-57.	4.9	4