Maksym Pogorielov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2094527/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In- vitro and in -vivo degradation studies of freeze gelated porous chitosan composite scaffolds for tissue engineering applications. Polymer Degradation and Stability, 2017, 136, 31-38.	2.7	74
2	Magnesium-based biodegradable alloys: Degradation, application, and alloying elements. Interventional Medicine & Applied Science, 2017, 9, 27-38.	0.2	68
3	Characterization and <i>in vivo</i> evaluation of chitosanâ€hydroxyapatite bone scaffolds made by one step coprecipitation method. Journal of Biomedical Materials Research - Part A, 2011, 96A, 639-647.	2.1	66
4	Chitosan-Based Bioactive Hemostatic Agents with Antibacterial Properties—Synthesis and Characterization. Molecules, 2019, 24, 2629.	1.7	63
5	MXenes—A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications. Nanomaterials, 2021, 11, 3412.	1.9	52
6	Trace Element Status (Iron, Zinc, Copper, Chromium, Cobalt, and Nickel) in Iron-Deficiency Anaemia of Children under 3 Years. Anemia, 2014, 2014, 1-8.	0.5	50
7	Cell and tissue response to nanotextured Ti6Al4V and Zr implants using high-speed femtosecond laser-induced periodic surface structures. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102036.	1.7	45
8	Effects of the sources of calcium and phosphorus on the structural and functional properties of ceramic coatings on titanium dental implants produced by plasma electrolytic oxidation. Materials Science and Engineering C, 2021, 119, 111607.	3.8	42
9	New Zr-Ti-Nb Alloy for Medical Application: Development, Chemical and Mechanical Properties, and Biocompatibility. Materials, 2020, 13, 1306.	1.3	37
10	Kinetically Deposited Copper Antimicrobial Surfaces. Coatings, 2019, 9, 257.	1.2	34
11	Antibacterial Activity of In Situ Prepared Chitosan/Silver Nanoparticles Solution Against Methicillin-Resistant Strains of Staphylococcus aureus. Nanoscale Research Letters, 2018, 13, 71.	3.1	33
12	In vitro evaluation of electrochemically bioactivated Ti6Al4V 3D porous scaffolds. Materials Science and Engineering C, 2021, 121, 111870.	3.8	33
13	Haemostatic chitosan coated gauze: in vitro interaction with human blood and in-vivo effectiveness. Biomaterials Research, 2015, 19, 22.	3.2	32
14	Degradation and In Vivo Response of Hydroxyapatite-Coated Mg Alloy. Coatings, 2018, 8, 375.	1.2	25
15	MXene-Assisted Ablation of Cells with a Pulsed Near-Infrared Laser. ACS Applied Materials & Interfaces, 2022, 14, 28683-28696.	4.0	23
16	Ag Nanoparticle-Decorated Oxide Coatings Formed via Plasma Electrolytic Oxidation on ZrNb Alloy. Materials, 2019, 12, 3742.	1.3	22
17	<i>In vitro</i> degradation and <i>in vivo</i> toxicity of NanoMatrix3D [®] polycaprolactone and poly(lactic acid) nanofibrous scaffolds. Journal of Biomedical Materials Research - Part A, 2018, 106, 2200-2212.	2.1	20
18	Hemostatic performance and biocompatibility of chitosan-based agents in experimental parenchymal bleeding. Materials Science and Engineering C, 2021, 120, 111740.	3.8	20

MAKSYM POGORIELOV

#	Article	IF	CITATIONS
19	Hemostatic and Tissue Regeneration Performance of Novel Electrospun Chitosan-Based Materials. Biomedicines, 2021, 9, 588.	1.4	20
20	Biocompatibility and Antibacterial Properties of ZnO-Incorporated Anodic Oxide Coatings on TiZrNb Alloy. Nanomaterials, 2020, 10, 2401.	1.9	19
21	Experimental evaluation of new chitin–chitosan graft for duraplasty. Journal of Materials Science: Materials in Medicine, 2017, 28, 34.	1.7	18
22	In Vitro Biological Characterization of Silver-Doped Anodic Oxide Coating on Titanium. Materials, 2020, 13, 4359.	1.3	17
23	Dielectric and electric properties of new chitosan-hydroxyapatite materials for biomedical application: Dielectric spectroscopy and corona treatment. Carbohydrate Polymers, 2016, 151, 770-778.	5.1	16
24	Synthesis and characterization of hydroxyapatite-gelatine composite materials for orthopaedic application. Materials Chemistry and Physics, 2016, 183, 93-100.	2.0	14
25	Single-walled carbon nanotubes loaded hydroxyapatite–alginate beads with enhanced mechanical properties and sustained drug release ability. Progress in Biomaterials, 2020, 9, 1-14.	1.8	14
26	Antibacterial activity of the new copper nanoparticles and Cu NPs/chitosan solution. , 2017, , .		13
27	Bioactivity Performance of Pure Mg after Plasma Electrolytic Oxidation in Silicate-Based Solutions. Molecules, 2021, 26, 2094.	1.7	13
28	Fast LIPSS based texturing process of dental implants with complex geometries. CIRP Annals - Manufacturing Technology, 2020, 69, 233-236.	1.7	13
29	Formation of a Bacteriostatic Surface on ZrNb Alloy via Anodization in a Solution Containing Cu Nanoparticles. Materials, 2020, 13, 3913.	1.3	12
30	Functional and biological characterization of chitosan electrospun nanofibrous membrane nucleated with silver nanoparticles. Applied Nanoscience (Switzerland), 2022, 12, 1061-1070.	1.6	11
31	Investigation of AC Electrical Properties of MXene-PCL Nanocomposites for Application in Small and Medium Power Generation. Energies, 2021, 14, 7123.	1.6	11
32	Effect of Ultrasound Treatment on Chitosan-Silver Nanoparticles Antimicrobial Activity. , 2018, , .		9
33	Plasma electrolytic oxidation of Zr-Ti-Nb alloy in phosphate-formate-EDTA electrolyte. Electrochimica Acta, 2022, 419, 140375.	2.6	9
34	Chemical and Structural Characterization of Sandlasted Surface of Dental Implant using ZrO2 Particle with Different Shape. Coatings, 2019, 9, 223.	1.2	7
35	Osteoblast Cell Response to LIPSS-Modified Ti-Implants. Key Engineering Materials, 0, 813, 322-327.	0.4	7
36	Low-frequency ultrasound increase effectiveness of silver nanoparticles in a purulent wound model. Biomedical Engineering Letters, 2020, 10, 621-631.	2.1	7

0

#	Article	IF	CITATIONS
37	Impact of Electrospinning Parameters and Post-Treatment Method on Antibacterial and Antibiofilm Activity of Chitosan Nanofibers. Molecules, 2022, 27, 3343.	1.7	6
38	Biocompatibility and electron microscopy studies of epitaxial nanolaminate (AlO·5Ti0.5)N/ZrN coatings deposited by Arc-PVD technique. Ceramics International, 2021, 47, 34648-34656.	2.3	5
39	Combination of Chlorhexidine and Silver Nanoparticles: an Efficient Wound Infection and Healing Control System. BioNanoScience, 2021, 11, 256-268.	1.5	4
40	Complementary Effect of Non-Persistent Silver Nano-Architectures and Chlorhexidine on Infected Wound Healing. Biomedicines, 2021, 9, 1215.	1.4	4
41	Bio-functionalization of Electrospun Polymeric Nanofibers by Ti ₃ C ₂ T _x MXene. , 2020, , .		4
42	Development, characterization and antimicrobial properties of silver nanoparticles loaded chitosan-alginate sponges for biomedical application. Journal of Materials Research, 2021, 36, 3267-3277.	1.2	3
43	Plasma Electrolytic Oxidation of TiZr Alloy in ZnONPs-Contained Solution: Structural and Biological Assessment. Springer Proceedings in Physics, 2020, , 75-82.	0.1	2
44	Physical and Chemical Characterization of the Magnesium Surface Modified by Plasma Electrolytic Oxidation – Influence of Immersion in Simulated Body Fluid. , 2020, , .		2
45	Mg alloys in vitro degradation in simulated body fluid and citrate solutions. , 2017, , .		1
46	Corrosion and Biocompatibility Improvement of HA-Coated Magnesium-Based Alloys as Bone Implant Materials. , 2018, , .		1
47	Nanostructured Hemostatic Sponges Made from Chitosan: Structural and Biological Evaluation. Springer Proceedings in Physics, 2020, , 95-110.	0.1	1
48	Cell and Tissue Response to Modified by Laser-induced Periodic Surface Structures Biocompatible Materials for Dental Implants. , 2016, , .		1
49	Structural and Biological Assessment of Mg Alloy Surface after Plasma Electrolytic Oxidation in Different Solutions. , 2020, , .		1
50	NanoMatrix3D® technology in development of nanofibrouse scaffolds: Biomedical evaluation. , 2017, , .		0
51	NanoMatrix3D [®] nanofibrous scaffolds for tissue engineering approaches. , 2017, , .		0
52	Development of Chitosan Hemostatic Sponges with Different Solvents and Tranexamic Acid. , 2018, , .		0
53	Chitosan-Based Composite Materials Comprising Metal or Metal Oxide Nanoparticles: Synthesis, Characterization and Antimicrobial Activity. , 2018, , .		0

54 Ti6Al4V Scaffolds with Alkali Activated Surfaces for Tissue Engineering. , 2021, , .

#	Article	IF	CITATIONS
55	PLA Nanofibrous Scaffolds for Full Thickness Wound Healing. Problems of Cryobiology and Cryomedicine, 2018, 28, 069-073.	0.3	0