Felix M Sharipov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2094290/publications.pdf Version: 2024-02-01

FELLY M SHADIDOV

#	Article	IF	CITATIONS
1	Data on Internal Rarefied Gas Flows. Journal of Physical and Chemical Reference Data, 1998, 27, 657-706.	1.9	665
2	Data on the Velocity Slip and Temperature Jump on a Gas-Solid Interface. Journal of Physical and Chemical Reference Data, 2011, 40, .	1.9	161
3	Rarefied gas flow through a long rectangular channel. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 3062-3066.	0.9	150
4	Application of the Cercignani–Lampis scattering kernel toÂcalculations of rarefied gas flows. II. Slip and jump coefficients. European Journal of Mechanics, B/Fluids, 2003, 22, 133-143.	1.2	127
5	Non-isothermal gas flow through rectangular microchannels. Journal of Micromechanics and Microengineering, 1999, 9, 394-401.	1.5	111
6	Velocity slip and temperature jump coefficients for gaseous mixtures. I. Viscous slip coefficient. Physics of Fluids, 2003, 15, 1800.	1.6	108
7	Gaseous mixture flow through a long tube at arbitrary Knudsen numbers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 814-822.	0.9	96
8	Numerical simulation of rarefied gas flow through a thin orifice. Journal of Fluid Mechanics, 2004, 518, 35-60.	1.4	95
9	Rarefied gas flow through short tubes into vacuum. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 228-238.	0.9	94
10	Rarefied gas flow through a long tube at any temperature ratio. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 2627-2635.	0.9	92
11	Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. I. Plane flow between two parallel plates. European Journal of Mechanics, B/Fluids, 2002, 21, 113-123.	1.2	86
12	Rarefied gas flow through a long tube at any pressure ratio. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 2933-2935.	0.9	85
13	Onsager-Casimir reciprocity relations for open gaseous systems at arbitrary rarefaction. Physica A: Statistical Mechanics and Its Applications, 1994, 203, 437-456.	1.2	80
14	Flow of gaseous mixtures through rectangular microchannels driven by pressure, temperature, and concentration gradients. Physics of Fluids, 2005, 17, 100607.	1.6	80
15	Gas flow through an elliptical tube over the whole range of the gas rarefaction. European Journal of Mechanics, B/Fluids, 2008, 27, 335-345.	1.2	78
16	Gaseous mixture flow between two parallel plates in the whole range of the gas rarefaction. Physica A: Statistical Mechanics and Its Applications, 2004, 336, 294-318.	1.2	73
17	Onsager-Casimir reciprocity relations for open gaseous systems at arbitrary rarefraction. Physica A: Statistical Mechanics and Its Applications, 1994, 203, 457-485.	1.2	69
18	Application of the Cercignani–Lampis scattering kernel toÂcalculations of rarefied gas flows. III.ÀPoiseuille flow and thermal creep through a long tube. European Journal of Mechanics, B/Fluids, 2003, 22, 145-154.	1.2	69

#	Article	IF	CITATIONS
19	Accommodation coefficient of tangential momentum on atomically clean and contaminated surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 2499-2503.	0.9	68
20	Model equations in rarefied gas dynamics: Viscous-slip and thermal-slip coefficients. Physics of Fluids, 2002, 14, 4123-4129.	1.6	68
21	Oscillatory Couette flow at arbitrary oscillation frequency over the whole range of the Knudsen number. Microfluidics and Nanofluidics, 2008, 4, 363-374.	1.0	68
22	Simulation of gas flow through tubes of finite length over the whole range of rarefaction for various pressure drop ratios. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 1377-1391.	0.9	65
23	Poiseuille flow and thermal creep based on the Boltzmann equation with the Lennard-Jones potential over a wide range of the Knudsen number. Physics of Fluids, 2009, 21, .	1.6	62
24	Monitoring of the operating parameters of the KATRIN Windowless Gaseous Tritium Source. New Journal of Physics, 2012, 14, 103046.	1.2	62
25	Velocity slip and temperature jump coefficients for gaseous mixtures. IV. Temperature jump coefficient. International Journal of Heat and Mass Transfer, 2005, 48, 1076-1083.	2.5	61
26	The temperature jump at water – air interface during evaporation. International Journal of Heat and Mass Transfer, 2017, 104, 800-812.	2.5	61
27	Couette flow with slip and jump boundary conditions. Continuum Mechanics and Thermodynamics, 2000, 12, 379-386.	1.4	60
28	Velocity slip and temperature jump coefficients for gaseous mixtures. II. Thermal slip coefficient. Physics of Fluids, 2004, 16, 759-764.	1.6	58
29	Discrete velocity modelling of gaseous mixture flows in MEMS. Superlattices and Microstructures, 2004, 35, 629-643.	1.4	58
30	Numerical solution of the linearized Boltzmann equation for an arbitrary intermolecular potential. Journal of Computational Physics, 2009, 228, 3345-3357.	1.9	57
31	Benchmark problems in rarefied gas dynamics. Vacuum, 2012, 86, 1697-1700.	1.6	50
32	Evaluating the potential of superhydrophobic nanoporous alumina membranes for direct contact membrane distillation. Journal of Colloid and Interface Science, 2019, 533, 723-732.	5.0	50
33	Rarefied gas flow through a long tube at arbitrary pressure and temperature drops. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 2434-2436.	0.9	49
34	Sound propagation through a rarefied gas confined between source and receptor at arbitrary Knudsen number and sound frequency. Physics of Fluids, 2009, 21, .	1.6	49
35	Heat transfer through a rarefied gas confined between two coaxial cylinders with high radius ratio. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 2087-2093. 	0.9	48
36	Benchmark problems for mixtures of rarefied gases. I. Couette flow. Physics of Fluids, 2013, 25, .	1.6	48

#	Article	IF	CITATIONS
37	Direct simulation Monte Carlo method for an arbitrary intermolecular potential. Physics of Fluids, 2012, 24, .	1.6	44
38	Non-isothermal flow of rarefied gas through a long pipe with elliptic cross section. Microfluidics and Nanofluidics, 2009, 6, 267-275.	1.0	43
39	On optimization of the discrete velocity method used in rarefied gas dynamics. Zeitschrift Fur Angewandte Mathematik Und Physik, 1993, 44, 572-577.	0.7	41
40	Rarefied gas flow through a slit. Influence of the boundary condition. Physics of Fluids, 1996, 8, 262-268.	1.6	41
41	Rarefied gas flow through a long tube of variable radius. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 531-533.	0.9	41
42	Velocity slip and temperature jump coefficients for gaseous mixtures. III. Diffusion slip coefficient. Physics of Fluids, 2004, 16, 3779-3785.	1.6	40
43	Plane Couette flow of binary gaseous mixture in the whole range of the Knudsen number. European Journal of Mechanics, B/Fluids, 2004, 23, 899-906.	1.2	40
44	Onsager-Casimir reciprocity relations for open gaseous systems at arbitrary rarefaction III. Theory and its application for gaseous mixtures. Physica A: Statistical Mechanics and Its Applications, 1994, 209, 457-476.	1.2	39
45	Heat flux between parallel plates through a binary gaseous mixture over the whole range of the Knudsen number. Physica A: Statistical Mechanics and Its Applications, 2007, 378, 183-193.	1.2	38
46	Ab initio simulation of heat transfer through a mixture of rarefied gases. International Journal of Heat and Mass Transfer, 2014, 71, 91-97.	2.5	37
47	Numerical modeling of the Holweck pump. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 1331-1339.	0.9	36
48	Onsager-Casimir reciprocal relations based on the Boltzmann equation and gas-surface interaction: Single gas. Physical Review E, 2006, 73, 026110.	0.8	36
49	Gas flow near a plate oscillating longitudinally with an arbitrary frequency. Physics of Fluids, 2007, 19, 017110.	1.6	36
50	Transient flow of rarefied gas through a short tube. Vacuum, 2013, 90, 25-30.	1.6	34
51	Separation phenomena for gaseous mixture flowing through a long tube into vacuum. Physics of Fluids, 2005, 17, 127102.	1.6	33
52	General approach to transient flows of rarefied gases through long capillaries. Vacuum, 2014, 100, 22-25.	1.6	32
53	Rarefied gas flow through channels of finite length at various pressure ratios. Vacuum, 2012, 86, 1952-1959.	1.6	31
54	<i>Ab initio</i> simulation of transport phenomena in rarefied gases. Physical Review E, 2012, 86, 031130.	0.8	31

#	Article	IF	CITATIONS
55	Gaseous mixture slit flow at intermediate Knudsen numbers. Physics of Fluids A, Fluid Dynamics, 1992, 4, 1283-1289.	1.6	30
56	Free molecular sound propagation. Journal of the Acoustical Society of America, 2002, 112, 395-401.	0.5	30
57	Rarefied gas flow through a thin slit into vacuum simulated by the Monte Carlo method over the whole range of the Knudsen number. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 479-484.	0.9	30
58	Numerical modeling of rarefied gas flow through a slit into vacuum based on the kinetic equation. Computers and Fluids, 2011, 49, 87-92.	1.3	28
59	Non-isothermal couette flow of a rarefied gas between two rotating cylinders. European Journal of Mechanics, B/Fluids, 1999, 18, 121-130.	1.2	27
60	Rarefied gas flow through a thin slit at an arbitrary pressure ratio. European Journal of Mechanics, B/Fluids, 2011, 30, 543-549.	1.2	27
61	Gaseous mixtures in vacuum systems and microfluidics. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	26
62	Transport coefficients of helium-neon mixtures at low density computed from <i>ab initio</i> potentials. Journal of Chemical Physics, 2017, 147, 224302.	1.2	26
63	Numerical modeling of the sound propagation through a rarefied gas in a semi-infinite space on the basis of linearized kinetic equation. Journal of the Acoustical Society of America, 2008, 124, 1993-2001.	0.5	25
64	End corrections for rarefied gas flows through capillaries of finite length. Vacuum, 2013, 97, 26-29.	1.6	25
65	Rarefied gas flow through a zigzag channel. Vacuum, 2012, 86, 1778-1782.	1.6	24
66	Numerical modelling of thermoacoustic waves in a rarefied gas confined between coaxial cylinders. Vacuum, 2014, 109, 326-332.	1.6	24
67	Transport coefficients of helium-argon mixture based on <i>ab initio</i> potential. Journal of Chemical Physics, 2015, 143, 154104.	1.2	24
68	The temperature and pressure jumps at the vapor–liquid interface: Application to a two-phase cooling system. International Journal of Heat and Mass Transfer, 2015, 83, 235-243.	2.5	24
69	On the frame dependence of constitutive equations. I. Heat transfer through a rarefied gas between two rotating cylinders. Continuum Mechanics and Thermodynamics, 1995, 7, 57-72.	1.4	23
70	Ab initio simulation of rarefied gas flow through a thin orifice. Vacuum, 2014, 109, 246-252.	1.6	23
71	Ab initio simulation of gaseous mixture flow through an orifice. Vacuum, 2017, 143, 106-118.	1.6	23
72	Non-isothermal rarefied gas flow through a slit. Physics of Fluids, 1997, 9, 1804-1810.	1.6	21

#	Article	IF	CITATIONS
73	Heat transfer in the Knudsen layer. Physical Review E, 2004, 69, 061201.	0.8	21
74	Nonlinear Couette flow between two rotating cylinders. Transport Theory and Statistical Physics, 1996, 25, 217-229.	0.4	20
75	Application of the integro-moment method to steady-state two-dimensional rarefied gas flows subject to boundary induced discontinuities. Journal of Computational Physics, 2008, 227, 6272-6287.	1.9	20
76	Transient flow of rarefied gas through an orifice. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 021602.	0.9	20
77	Sound propagation through a binary mixture of rarefied gases at arbitrary sound frequency. European Journal of Mechanics, B/Fluids, 2016, 57, 50-63.	1.2	20
78	Monte Carlo simulation of gas flow through the KATRIN DPS2-F differential pumping system. Vacuum, 2006, 80, 864-869.	1.6	19
79	End corrections for rarefied gas flows through circular tubes of finite length. Vacuum, 2014, 101, 306-312.	1.6	19
80	Energy accommodation coefficient extracted from acoustic resonator experiments. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	19
81	Rarefied Gas Flow into Vacuum Through Thin Orifice: Influence of Boundary Conditions. AIAA Journal, 2002, 40, 2006-2008.	1.5	18
82	Transport coefficients of argon and its mixtures with helium and neon at low density based ab initio potentials. Fluid Phase Equilibria, 2019, 498, 23-32.	1.4	18
83	Heat conduction through a rarefied gas between two rotating cylinders at small temperature difference. Zeitschrift Fur Angewandte Mathematik Und Physik, 1995, 46, 680-692.	0.7	17
84	Sound propagation through a rarefied gas. Influence of the gas–surface interaction. International Journal of Heat and Fluid Flow, 2012, 38, 190-199.	1.1	17
85	Hypersonic flow of rarefied gas near the Brazilian satellite during its reentry into atmosphere. Brazilian Journal of Physics, 2003, 33, 398-405.	0.7	16
86	Numerical modelling of rarefied gas flow through a slit at arbitrary pressure ratio based on the kinetic equation. Zeitschrift Fur Angewandte Mathematik Und Physik, 2012, 63, 503-520.	0.7	16
87	Primary pressure standard based on piston-cylinder assemblies. Calculation of effective cross sectional area based on rarefied gas dynamics. Metrologia, 2016, 53, 1177-1184.	0.6	16
88	Sound waves in gaseous mixtures induced by vibro-thermal excitation at arbitrary rarefaction and sound frequency. Vacuum, 2019, 159, 82-98.	1.6	16
89	Neutral tritium gas reduction in the KATRIN differential pumping sections. Vacuum, 2021, 184, 109979.	1.6	16
90	Modeling of transport phenomena in gases based on quantum scattering. Physica A: Statistical Mechanics and Its Applications, 2018, 508, 797-805.	1.2	15

#	Article	lF	CITATIONS
91	Temperature dependence of shock wave structure in helium and neon. Physics of Fluids, 2019, 31, .	1.6	15
92	Ab initio calculation of rarefied flows of helium-neon mixture: Classical vs quantum scatterings. International Journal of Heat and Mass Transfer, 2019, 145, 118765.	2.5	14
93	Drag and thermophoresis on a sphere in a rarefied gas based on the Cercignani–Lampis model of gas–surface interaction. Journal of Fluid Mechanics, 2020, 900, .	1.4	14
94	Onsager-Casimir Reciprocal Relations Based on the Boltzmann Equation and Gas-Surface Interaction. Gaseous Mixtures. Journal of Statistical Physics, 2006, 125, 661-675.	0.5	13
95	Flows of rarefied gaseous mixtures with a low mole fraction. Separation phenomenon. European Journal of Mechanics, B/Fluids, 2011, 30, 466-473.	1.2	13
96	Reciprocal relations based on the non-stationary Boltzmann equation. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 1972-1983.	1.2	13
97	Influence of gas–surface interaction on gaseous transmission probability through conical and spherical ducts. Vacuum, 2015, 121, 22-25.	1.6	13
98	Modelling of gas dynamical properties of the Katrin tritium source and implications for the neutrino mass measurement. Vacuum, 2018, 158, 195-205.	1.6	13
99	Comparison of the Shakhov and ellipsoidal models for the Boltzmann equation and DSMC for ab initio-based particle interactions. Computers and Fluids, 2020, 211, 104637.	1.3	13
100	Transport phenomena in rotating rarefied gases. Physics of Fluids, 2001, 13, 335-346.	1.6	12
101	Ab initio simulation of planar shock waves. Computers and Fluids, 2017, 150, 115-122.	1.3	12
102	Influence of quantum intermolecular interaction on internal flows of rarefied gases. Vacuum, 2018, 156, 146-153.	1.6	12
103	Transport coefficients of multi-component mixtures of noble gases based on ab initio potentials: Viscosity and thermal conductivity. Physics of Fluids, 2020, 32, 077104.	1.6	12
104	Tritium gas flow dynamics through the source and transport system of the Karlsruhe tritium neutrino experiment. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 73-81.	0.9	11
105	Leak rate of water into vacuum through microtubes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 443-448.	0.9	11
106	Numerical simulation of turbomolecular pump over a wide range of gas rarefaction. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 1312-1315.	0.9	11
107	Flow of a monatomic rarefied gas over a circular cylinder: Calculations based on the ab initio potential method. International Journal of Heat and Mass Transfer, 2017, 114, 47-61.	2.5	11
108	Rarefied gas motion in a short planar channel over the entire knudsen number range. Journal of Applied Mechanics and Technical Physics, 1990, 30, 713-717.	0.1	10

#	Article	IF	CITATIONS
109	Onsager-Casimir reciprocity relation for the gyrothermal effect with polyatomic gases. Physical Review E, 1999, 59, 5128-5132.	0.8	10
110	On the discrete spectrum of the nonanalytic matrix-valued Friedrichs model. Functional Analysis and Its Applications, 1998, 32, 49-51.	0.1	9
111	Onsager–Casimir reciprocity relations for open gaseous systems at arbitrary rarefaction IV. Rotating systems. Physica A: Statistical Mechanics and Its Applications, 1998, 260, 499-509.	1.2	8
112	Rarefied gas flow between two cylinders caused by the evaporation and condensation on their surfaces. Physics of Fluids, 1998, 10, 3203-3208.	1.6	8
113	Data on the velocity slip and temperature jump coefficients [gas mass, heat and momentum transfer]. , 0, , .		7
114	Transport coefficients of multicomponent mixtures of noble gases based onab initiopotentials: Diffusion coefficients and thermal diffusion factors. Physics of Fluids, 2020, 32, 097110.	1.6	7
115	Transport coefficients of isotopic mixtures of noble gases based on ab initio potentials. Physical Chemistry Chemical Physics, 2021, 23, 16664-16674.	1.3	7
116	Flow of a rarefied gas in a plane channel of finite length for a wide range of Knudsen numbers. Journal of Applied Mechanics and Technical Physics, 1988, 29, 97-103.	0.1	6
117	Application of the Cercignani-Lampis scattering kernel to channel gas flows. AIP Conference Proceedings, 2001, , .	0.3	6
118	The reciprocal relations between cross phenomena in boundless gaseous systems. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 3743-3760.	1.2	6
119	Structure of planar shock waves in gaseous mixtures based on ab initio direct simulation. European Journal of Mechanics, B/Fluids, 2018, 72, 251-263.	1.2	6
120	Experimental investigation of the separation of binary gaseous mixtures flowing through a capillary tube. Physics of Fluids, 2020, 32, .	1.6	6
121	THE INFLUENCE OF SLIP AND JUMP BOUNDARY CONDITIONS ON THE CYLINDRICAL COUETTE FLOW. Mathematical Models and Methods in Applied Sciences, 2002, 12, 445-459.	1.7	5
122	The structure of shock waves propagating through heavy noble gases: temperature dependence. Shock Waves, 2021, 31, 609-617.	1.0	5
123	Evaluation of effective area of air piston gauge with limitations in piston–cylinder dimension measurements. Metrologia, 2021, 58, 035004.	0.6	5
124	Nonisothermal motion of a rarefied gas in a short planar channel over a wide range of knudsen number. Journal of Engineering Physics, 1990, 59, 869-875.	0.0	4
125	Short Communication. Comments on $\hat{a} \in \hat{a}$ On the Theory of Thermall Polarization of Bodies in a Rarefied Gas Flow $\hat{a} \in \hat{b}$ Journal of Non-Equilibrium Thermodynamics, 1996, 21, .	2.4	4
126	Rarefied Gas Flow Through an Orifice at Finite Pressure Ratio. AIP Conference Proceedings, 2003, , .	0.3	4

#	Article	IF	CITATIONS
127	Power-series expansion of the Boltzmann equation and reciprocal relations for nonlinear irreversible phenomena. Physical Review E, 2011, 84, 061137.	0.8	4
128	Lattice Boltzmann approach to rarefied gas flows using half-range Gauss-Hermite quadratures: Comparison to DSMC results based on ab initio potentials. AIP Conference Proceedings, 2019, , .	0.3	4
129	Sublimation and deposition in gaseous mixtures. International Journal of Heat and Mass Transfer, 2020, 160, 120213.	2.5	4
130	Radiometric force on a sphere in a rarefied gas based on the Cercignani–Lampis model of gas–surface interaction. Physics of Fluids, 2021, 33, .	1.6	4
131	Comments on "mechanodiffusion in slightly rarefied gas mixture― Physica A: Statistical Mechanics and Its Applications, 1995, 216, 249-254.	1.2	3
132	Rarefied gas flow through a thin orifice. AIP Conference Proceedings, 2001, , .	0.3	3
133	Slip Coefficients for Gaseous Mixtures. AIP Conference Proceedings, 2003, , .	0.3	3
134	Comment on "Note on the relation between thermophoresis and slow uniform flow problems for a rarefied gas―[Phys. Fluids 21, 112001 (2009)]. Physics of Fluids, 2010, 22, 049101.	1.6	3
135	Aerothermodynamics of Satellite During Atmospheric Reentry for the Whole Range of Gas Rarefaction: Influence of Inelastic Intermolecular Collisions. Brazilian Journal of Physics, 2012, 42, 192-206.	0.7	3
136	Aerothermodynamics of a sphere in a monatomic gas based on <i>ab initio</i> interatomic potentials over a wide range of gas rarefaction: transonic, supersonic and hypersonic flows. Journal of Fluid Mechanics, 2022, 942, .	1.4	3
137	Comments on "Symmetry of the Linearized Boltzmann Equation―by S.ÂTakata. Journal of Statistical Physics, 2010, 139, 536-537.	0.5	2
138	Gas Flow in Nanochannels. , 2008, , 772-778.		2
139	Motion of a rarefied gas in a plane channel in the presence of condensation on the channel walls. Journal of Engineering Physics, 1989, 57, 1420-1426.	0.0	1
140	Nonisothermal rarefied gas flow through a narrow slit. Fluid Dynamics, 1991, 25, 642-645.	0.2	1
141	Micro- and Nanoscale Gas Dynamics. , 2008, , 1281-1287.		1
142	Direct Simulation Monte Carlo Method Applied to Aerothermodynamics. Revista Brasileira De Ciencias Mecanicas/Journal of the Brazilian Society of Mechanical Sciences, 2001, 23, 441-452.	0.1	1
143	Thermophoretic force on a sphere of arbitrary thermal conductivity in a rarefied gas. Vacuum, 2022, 201, 111062.	1.6	1
144	Mass transfer in a plane finite pore on a broad interval of Knudsen numbers with allowance for condensation. Journal of Engineering Physics, 1987, 53, 746-749.	0.0	0

#	Article	IF	CITATIONS
145	Onsager reciprocal relationships for the motion of a rarified monatomic gas in an external field. USSR Computational Mathematics and Mathematical Physics, 1990, 30, 226-231.	0.0	0
146	Onsager reciprocity relation for rarefied gas flow in a laser radiation field. Fluid Dynamics, 1991, 26, 135-138.	0.2	0
147	Asymptotic behavior of rotating rarefied gases with evaporation and condensation. AIP Conference Proceedings, 2001, , .	0.3	0
148	Recent Results of Rarefied Gas Dynamics and Their Applications in Microflows. , 2005, , 393.		0
149	Rarefied Gas Flow through Tubes of Finite Length. , 2008, , .		0
150	Response to "Comment on â€~Direct simulation Monte Carlo method for an arbitrary intermolecular potential'―[Phys. Fluids 25, 049101 (2013)]. Physics of Fluids, 2013, 25, 089101.	1.6	0
151	Response to "Comment on â€~Data on Internal Rarefied Gas Flowsâ€â€™ [J. Phys. Chem. Ref. Data 44, 03610] (2015)]. Journal of Physical and Chemical Reference Data, 2015, 44, 036102.	1.9	0
152	Ab Initio Simulation of Shock Waves Propagating Through Gaseous Mixtures. , 2019, , 913-918.		0
153	Transport Phenomena Through Gaseous Mixtures in Microchannels. , 2007, , .		0
154	Sound Propagation Through a Gas in Microscale. , 2009, , .		0
155	Analytische und numerische Berechnungen von stationÃæn Flüssen verdünnter Gase. , 2012, , 173-231.		0
156	Gas Flow in Nanochannels. , 2013, , 1-10.		0
157	Micro- and Nanoscale Gas Dynamics. , 2013, , 1-12.		0
158	Micro- and Nanoscale Gas Dynamics. , 2015, , 1787-1794.		0
159	Grundlagen der exakten Berechnung von stationĤen Flļssen verdļnnter Gase. Springer Reference Technik, 2017, , 1-38.	0.0	0
160	Strömung von Gasen durch Rohre und Blenden. Springer Reference Technik, 2017, , 1-33.	0.0	0
161	Strömung von Gasen durch Rohre und Blenden. Springer Reference Technik, 2018, , 233-264.	0.0	0
162	Grundlagen der exakten Berechnung von stationĤen Flļssen verdļnnter Gase. Springer Reference Technik, 2018, , 195-232.	0.0	0