Davi Felipe Farias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/209406/publications.pdf

Version: 2024-02-01

471061 414034 1,123 48 17 32 citations h-index g-index papers 49 49 49 1767 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Moringa oleifera: bioactive compounds and nutritional potential. Revista De Nutricao, 2008, 21, 431-437.	0.4	167
2	Protein fractions, amino acid composition and antinutritional constituents of high-yielding cowpea cultivars. Journal of Food Composition and Analysis, 2010, 23, 54-60.	1.9	92
3	Nutritive and non-nutritive attributes of washed-up seaweeds from the coast of Cear $ ilde{A}_i$, Brazil. Food Chemistry, 2009, 115, 254-259.	4.2	65
4	Nutritional ranking of 30 Brazilian genotypes of cowpeas including determination of antioxidant capacity and vitamins. Journal of Food Composition and Analysis, 2012, 26, 81-88.	1.9	64
5	Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L Parasitology Research, 2013, 112, 1953-1958.	0.6	55
6	Toxicity testing of pesticides in zebrafish—a systematic review on chemicals and associated toxicological endpoints. Environmental Science and Pollution Research, 2020, 27, 10185-10204.	2.7	55
7	Antibacterial, Antioxidant, and Anticholinesterase Activities of Plant Seed Extracts from Brazilian Semiarid Region. BioMed Research International, 2013, 2013, 1-9.	0.9	54
8	A Protein Isolate from Moringa oleifera Leaves Has Hypoglycemic and Antioxidant Effects in Alloxan-Induced Diabetic Mice. Molecules, 2017, 22, 271.	1.7	50
9	Study of the antiproliferative potential of seed extracts from Northeastern Brazilian plants. Anais Da Academia Brasileira De Ciencias, 2011, 83, 1045-1058.	0.3	43
10	Larvicidal activity of the water extract of Moringa oleifera seeds against Aedes aegypti and its toxicity upon laboratory animals. Anais Da Academia Brasileira De Ciencias, 2009, 81, 207-216.	0.3	42
11	Toxicity and Antitumor Activity of a Thiophene–Acridine Hybrid. Molecules, 2020, 25, 64.	1.7	32
12	Impact of bioaccessibility and bioavailability of phenolic compounds in biological systems upon the antioxidant activity of the ethanolic extract of Triplaris gardneriana seeds. Biomedicine and Pharmacotherapy, 2017, 88, 999-1007.	2.5	29
13	Atividades biológicas e enzimáticas do extrato aquoso de sementes de Caesalpinia ferrea Mart., Leguminosae. Revista Brasileira De Farmacognosia, 2009, 19, 586-591.	0.6	27
14	Insecticidal Action of Sodium Anacardate from Brazilian Cashew Nut Shell Liquid against Aedes aegypti. Journal of the American Mosquito Control Association, 2009, 25, 386-389.	0.2	26
15	Food safety assessment of an antifungal protein from Moringa oleifera seeds in an agricultural biotechnology perspective. Food and Chemical Toxicology, 2015, 83, 1-9.	1.8	26
16	Identification, characterization, and antifungal activity of cysteine peptidases from Calotropis procera latex. Phytochemistry, 2020, 169, 112163.	1.4	26
17	Water extracts of Brazilian leguminous seeds as rich sources of larvicidal compounds against Aedes aegypti L Anais Da Academia Brasileira De Ciencias, 2010, 82, 585-594.	0.3	21
18	Insecticidal activity against <i>Aedes aegypti</i> of <i>m</i> â€pentadecadienylâ€phenol isolated from <i>Myracrodruon urundeuva</i> seeds. Pest Management Science, 2012, 68, 1380-1384.	1.7	19

#	Article	IF	CITATIONS
19	Preliminary assessment of the nutritional composition of underexploited wild legumes from semi-arid Caatinga and moist forest environments of northeastern Brazil. Journal of Food Composition and Analysis, 2011, 24, 487-493.	1.9	18
20	A novel piperine analogue exerts in vivo antitumor effect by inducing oxidative, antiangiogenic and immunomodulatory actions. Biomedicine and Pharmacotherapy, 2020, 128, 110247.	2.5	17
21	Proteomics analysis of zebrafish larvae exposed to 3,4â€dichloroaniline using the fish embryo acute toxicity test. Environmental Toxicology, 2020, 35, 849-860.	2.1	16
22	Polyphenol Composition, Antioxidant Activity and Cytotoxicity of Seeds from Two Underexploited Wild Licania Species: L. rigida and L. tomentosa. Molecules, 2016, 21, 1755.	1.7	15
23	Food safety assessment of Cry8Ka5 mutant protein using Cry1Ac as a control Bt protein. Food and Chemical Toxicology, 2015, 81, 81-91.	1.8	14
24	Biotechnological potential of a cysteine protease (CpCP3) from Calotropis procera latex for cheesemaking. Food Chemistry, 2020, 307, 125574.	4.2	14
25	Exposure to 2,4-D herbicide induces hepatotoxicity in zebrafish larvae. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2021, 248, 109110.	1.3	14
26	COVIDâ€19 Therapies in Brazil: Should We Be Concerned with the Impacts on Aquatic Wildlife?. Environmental Toxicology and Chemistry, 2020, 39, 2348-2350.	2.2	13
27	Moxidectin toxicity to zebrafish embryos: Bioaccumulation and biomarker responses. Environmental Pollution, 2021, 283, 117096.	3.7	13
28	Chemical Composition, Nutritive Value, and Toxicological Evaluation of <i>Bauhinia cheilantha </i> Seeds: A Legume from Semiarid Regions Widely Used in Folk Medicine. BioMed Research International, 2013, 2013, 1-7.	0.9	11
29	Phenolic compounds of Triplaris gardneriana can protect cells against oxidative stress and restore oxidative balance. Biomedicine and Pharmacotherapy, 2017, 93, 1261-1268.	2.5	10
30	Risk assessment of the antifungal and insecticidal peptide Jaburetox and its parental protein the Jack bean (Canavalia ensiformis) urease. Food and Chemical Toxicology, 2020, 136, 110977.	1.8	8
31	Anticancer Effect of a Spiro-acridine Compound Involves Immunomodulatory and Anti-angiogenic Actions. Anticancer Research, 2020, 40, 5049-5057.	0.5	8
32	Evaluation of seeds ethanolic extracts of Triplaris gardneriana Wedd. using in vitro and in vivo toxicological methods. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2020, 83, 135-152.	1.1	8
33	Evaluation of Cytotoxic and Antimicrobial Effects of Two <i>Bt</i> Cry Proteins on a GMO Safety Perspective. BioMed Research International, 2014, 2014, 1-14.	0.9	7
34	Neutralizing Effect of Synthetic Peptides toward SARS-CoV-2. ACS Omega, 2022, 7, 16222-16234.	1.6	7
35	Combination of Chemical Analyses and Animal Feeding Trials as Reliable Procedures to Assess the Safety of Heat Processed Soybean Seeds. Journal of Agricultural and Food Chemistry, 2009, 57, 4668-4673.	2.4	6
36	Chemical composition, nutritional properties, and antioxidant activity of Licania tomentosa (Benth.) fruit. Food Chemistry, 2020, 313, 126117.	4.2	6

#	Article	IF	CITATIONS
37	Short-Term Evaluation in Growing Rats of Diet ContainingBacillus thuringiensisCry1Ia12 Entomotoxin: Nutritional Responses and Some Safety Aspects. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-8.	3.0	5
38	Increased Levels of Antinutritional and/or Defense Proteins Reduced the Protein Quality of a Disease-Resistant Soybean Cultivar. Nutrients, 2015, 7, 6038-6054.	1.7	4
39	Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants. Bioengineered, 2015, 6, 323-327.	1.4	4
40	Assessing the effects of an acute exposure to worst-case concentration of Cry proteins on zebrafish using the embryotoxicity test and proteomics analysis. Chemosphere, 2021, 264, 128538.	4.2	4
41	Toxicological Parameters of a Formulation Containing Cinnamaldehyde for Use in Treatment of Oral Fungal Infections: An In Vivo Study. BioMed Research International, 2021, 2021, 1-13.	0.9	4
42	<i>In vitro</i> antibacterial and anti-inflammatory effects of <i>Anacardium occidentale</i> L. extracts and their toxicity on PBMCs and zebrafish embryos. Drug and Chemical Toxicology, 2022, 45, 2653-2663.	1.2	2
43	In vitro toxicological characterisation of the antifungal compound soybean toxin (SBTX). Toxicology in Vitro, 2020, 65, 104824.	1.1	1
44	Chemotherapeutic and Safety Profile of a Fraction from Mimosa caesalpiniifolia Stem Bark. Journal of Oncology, 2021, 2021, 1-12.	0.6	1
45	Physicochemical and Biological Characterization of Agrowaste from Green Coconut Shell and its Potential Use in Laboratory Animal Breeding. Journal of Solid Waste Technology and Management, 2012, 38, 194-201.	0.2	0
46	O tutor como agente facilitador no processo de ensino e aprendizagem: uma experiência na disciplina de BioquÃmica Metabólica. Journal of Biochemistry Education, 2019, 17, 1-14.	0.1	0
47	Toxicological assessment of a bioactive extract from Triplaris gardneriana Wedd. seeds using alternative models. Drug and Chemical Toxicology, 2020, , 1 - 11 .	1.2	0
48	A brief report on some health aspects of rats fed with crescent levels of recombinant chagasin, a potential plant defense protein. Anais Da Academia Brasileira De Ciencias, 2012, 84, 185-190.	0.3	O