Stefan Simm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2093796/publications.pdf

Version: 2024-02-01

516710 552781 27 985 16 26 citations h-index g-index papers 27 27 27 1504 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Enhanced pro-apoptosis gene signature following the activation of TAp63α in oocytes upon γ irradiation. Cell Death and Disease, 2022, 13, 204.	6.3	5
2	Cloning and Functional Characterization of Dog OCT1 and OCT2: Another Step in Exploring Species Differences in Organic Cation Transporters. International Journal of Molecular Sciences, 2022, 23, 5100.	4.1	1
3	Macrophages Are Polarized toward an Inflammatory Phenotype by their Aged Microenvironment in the Human Skin. Journal of Investigative Dermatology, 2022, 142, 3136-3145.e11.	0.7	5
4	Insertion of plastidic \hat{l}^2 -barrel proteins into the outer envelopes of plastids involves an intermembrane space intermediate formed with Toc75-V/OEP80. Plant Cell, 2021, 33, 1657-1681.	6.6	15
5	Effect of thermospermine on expression profiling of different gene using massive analysis of cDNA ends (MACE) and vascular maintenance in Arabidopsis. Physiology and Molecular Biology of Plants, 2021, 27, 577-586.	3.1	3
6	miRNAs involved in transcriptome remodeling during pollen development and heat stress response in Solanum lycopersicum. Scientific Reports, 2020, 10, 10694.	3.3	22
7	The Existence and Localization of Nuclear snoRNAs in Arabidopsis thaliana Revisited. Plants, 2020, 9, 1016.	3.5	14
8	Transcriptional Basis for Differential Thermosensitivity of Seedlings of Various Tomato Genotypes. Genes, 2020, 11, 655.	2.4	5
9	Toc75â€V/OEP80 is processed during translocation into chloroplasts, and the membraneâ€embedded form exposes its POTRA domain to the intermembrane space. FEBS Open Bio, 2020, 10, 444-454.	2.3	14
10	Functional diversification of tomato HsfA1 factors is based on DNA binding domain properties. Gene, 2019, 714, 143985.	2.2	20
11	HEATSTER: A Database and Web Server for Identification and Classification of Heat Stress Transcription Factors in Plants. Bioinformatics and Biology Insights, 2019, 13, 117793221882136.	2.0	26
12	The repressor and coâ€activator HsfB1 regulates the major heat stress transcription factors in tomato. Plant, Cell and Environment, 2019, 42, 874-890.	5.7	63
13	Regulation of two GTPases Toc159 and Toc34 in the translocon of the outer envelope of chloroplasts. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 627-636.	2.3	14
14	Identification of the TXNIP IRES and characterization of the impact of regulatory IRES trans-acting factors. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 147-157.	1.9	12
15	The coupling of transcriptome and proteome adaptation during development and heat stress response of tomato pollen. BMC Genomics, 2018, 19, 447.	2.8	68
16	Alternative splicing in tomato pollen in response to heat stress. DNA Research, 2017, 24, dsw051.	3.4	55
17	Reducing Cytoplasmic Polyamine Oxidase Activity in Arabidopsis Increases Salt and Drought Tolerance by Reducing Reactive Oxygen Species Production and Increasing Defense Gene Expression. Frontiers in Plant Science, 2016, 7, 214.	3.6	46
18	HsfA2 Controls the Activity of Developmentally and Stress-Regulated Heat Stress Protection Mechanisms in Tomato Male Reproductive Tissues. Plant Physiology, 2016, 170, 2461-2477.	4.8	148

#	ARTICLE	lF	CITATION
19	50Âyears of amino acid hydrophobicity scales: revisiting the capacity for peptide classification. Biological Research, 2016, 49, 31.	3.4	77
20	Survey of Genes Involved in Biosynthesis, Transport, and Signaling of Phytohormones with Focus on <i>Solanum lycopersicum</i> . Bioinformatics and Biology Insights, 2016, 10, BBI.S38425.	2.0	21
21	The membrane proteome of male gametophyte in Solanum lycopersicum. Journal of Proteomics, 2016, 131, 48-60.	2.4	25
22	Identification and Expression Analysis of Ribosome Biogenesis Factor Co-orthologs in <i>Solanum lycopersicum</i> Bioinformatics and Biology Insights, 2015, 9, BBI.S20751.	2.0	62
23	Chaperone network composition in <scp><i>S</i></scp> <i>olanum lycopersicum</i> explored by transcriptome profiling and microarray metaâ€analysis. Plant, Cell and Environment, 2015, 38, 693-709.	5.7	71
24	The composition of the global and feature specific cyanobacterial core-genomes. Frontiers in Microbiology, 2015, 6, 219.	3.5	38
25	Defining the Core Proteome of the Chloroplast Envelope Membranes. Frontiers in Plant Science, 2013, 4, 11.	3.6	75
26	40S Ribosome Biogenesis Co-Factors Are Essential for Gametophyte and Embryo Development. PLoS ONE, 2013, 8, e54084.	2.5	74
27	Relevance and Regulation of Alternative Splicing in Plant Heat Stress Response: Current Understanding and Future Directions. Frontiers in Plant Science, 0, 13, .	3.6	6