
Sungwoo hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2093754/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Short Enantioselective Pathway for the Synthesis of the Anti-Influenza Neuramidase Inhibitor Oseltamivir from 1,3-Butadiene and Acrylic Acid. Journal of the American Chemical Society, 2006, 128, 6310-6311.	6.6	257
2	Synergistic Effect of Graphene Oxide/MWCNT Films in Laser Desorption/Ionization Mass Spectrometry of Small Molecules and Tissue Imaging. ACS Nano, 2011, 5, 4550-4561.	7.3	182
3	Visibleâ€Lightâ€Induced Pyridylation of Remote C(sp ³)â^'H Bonds by Radical Translocation of Nâ€Alkoxypyridinium Salts. Angewandte Chemie - International Edition, 2018, 57, 15517-15522.	7.2	141
4	Visible light induced alkene aminopyridylation using N-aminopyridinium salts as bifunctional reagents. Nature Communications, 2019, 10, 4117.	5.8	137
5	Design and Synthesis of Imidazopyridine Analogues as Inhibitors of Phosphoinositide 3-Kinase Signaling and Angiogenesis. Journal of Medicinal Chemistry, 2011, 54, 2455-2466.	2.9	127
6	N-Heterocyclic carbene-catalyzed deaminative cross-coupling of aldehydes with Katritzky pyridinium salts. Chemical Science, 2020, 11, 3192-3197.	3.7	121
7	Palladium atalyzed Dehydrogenation/Oxidative Cross oupling Sequence of βâ€Heteroatomâ€&ubstituted Ketones. Angewandte Chemie - International Edition, 2012, 51, 11333-11336.	7.2	113
8	Palladium(II)-Catalyzed Direct Intermolecular Alkenylation of Chromones. Organic Letters, 2011, 13, 4466-4469.	2.4	108
9	Regioselective palladium-catalyzed olefination of coumarinsvia aerobic oxidative Heck reactions. Chemical Communications, 2013, 49, 196-198.	2.2	107
10	Visible-Light-Driven C4-Selective Alkylation of Pyridinium Derivatives with Alkyl Bromides. Journal of the American Chemical Society, 2020, 142, 11370-11375.	6.6	102
11	Visibleâ€Lightâ€Induced 1,3â€Aminopyridylation of [1.1.1]Propellane with <i>N</i> â€Aminopyridinium Salts. Angewandte Chemie - International Edition, 2021, 60, 7873-7879.	7.2	100
12	Site-Selective Functionalization of Pyridinium Derivatives via Visible-Light-Driven Photocatalysis with Quinolinone. Journal of the American Chemical Society, 2019, 141, 9239-9248.	6.6	98
13	Site-Selective Direct C–H Pyridylation of Unactivated Alkanes by Triplet Excited Anthraquinone. Journal of the American Chemical Society, 2021, 143, 3003-3012.	6.6	94
14	Direct Phosphonation of Quinolinones and Coumarins Driven by the Photochemical Activity of Substrates and Products. Organic Letters, 2017, 19, 1394-1397.	2.4	91
15	Regioselective palladium-catalyzed direct cross-coupling of coumarins with simple arenes. Chemical Communications, 2012, 48, 9613.	2.2	86
16	Site-Selective 1,1-Difunctionalization of Unactivated Alkenes Enabled by Cationic Palladium Catalysis. Journal of the American Chemical Society, 2019, 141, 10048-10059.	6.6	84
17	Visible-Light-Enabled <i>Ortho</i> -Selective Aminopyridylation of Alkenes with <i>N</i> -Aminopyridinium Ylides. Journal of the American Chemical Society, 2020, 142, 12420-12429.	6.6	84
18	NiH-Catalyzed Proximal-Selective Hydroamination of Unactivated Alkenes. Journal of the American Chemical Society, 2020, 142, 20470-20480.	6.6	78

#	Article	IF	CITATIONS
19	Visibleâ€Lightâ€Induced ortho â€Selective Migration on Pyridyl Ring: Trifluoromethylative Pyridylation of Unactivated Alkenes. Angewandte Chemie - International Edition, 2020, 59, 281-285.	7.2	77
20	Visible-Light-Photocatalyzed Synthesis of Phenanthridinones and Quinolinones via Direct Oxidative C–H Amidation. Organic Letters, 2018, 20, 240-243.	2.4	74
21	Design, Synthesis, and Evaluation of 3,5-Disubstituted 7-Azaindoles as Trk Inhibitors with Anticancer and Antiangiogenic Activities. Journal of Medicinal Chemistry, 2012, 55, 5337-5349.	2.9	73
22	Rh(III) and Ru(II)-Catalyzed Site-Selective C–H Alkynylation of Quinolones. Organic Letters, 2015, 17, 1938-1941.	2.4	72
23	Asymmetric C–H functionalization of cyclopropanes using an isoleucine-NH2 bidentate directing group. Chemical Science, 2015, 6, 3611-3616.	3.7	72
24	Site-Selective C–H Acylation of Pyridinium Derivatives by Photoredox Catalysis. ACS Catalysis, 2019, 9, 9891-9896.	5.5	72
25	Functionalization of Pyridinium Derivatives with 1,4-Dihydropyridines Enabled by Photoinduced Charge Transfer. Organic Letters, 2020, 22, 8730-8734.	2.4	70
26	Photochemical Carbopyridylation of Alkenes Using <i>N</i> â€Alkenoxypyridinium Salts as Bifunctional Reagents. Angewandte Chemie - International Edition, 2020, 59, 2049-2054.	7.2	69
27	Visibleâ€Lightâ€Enabled Trifluoromethylative Pyridylation of Alkenes from Pyridines and Triflic Anhydride. Angewandte Chemie - International Edition, 2020, 59, 13379-13384.	7.2	67
28	HS-173, a Novel PI3K Inhibitor, Attenuates the Activation of Hepatic Stellate Cells in Liver Fibrosis. Scientific Reports, 2013, 3, 3470.	1.6	66
29	Catalyst Controlled Divergent C4/C8 Site-Selective C–H Arylation of Isoquinolones. Organic Letters, 2015, 17, 3864-3867.	2.4	66
30	One-pot catalysis of dehydrogenation of cyclohexanones to phenols and oxidative Heck coupling: expedient synthesis of coumarins. Chemical Communications, 2013, 49, 4021.	2.2	64
31	Visible-Light-Induced Remote C(sp ³)–H Pyridylation of Sulfonamides and Carboxamides. Organic Letters, 2019, 21, 9719-9723.	2.4	59
32	Enantioselective Synthesis of Bridged- or Fused-Ring Bicyclic Ketones by a Catalytic Asymmetric Michael Addition Pathway. Journal of the American Chemical Society, 2006, 128, 8160-8161.	6.6	58
33	Unraveling innate substrate control in site-selective palladium-catalyzed C–H heterocycle functionalization. Chemical Science, 2016, 7, 3900-3909.	3.7	58
34	Discovery of EGF Receptor Inhibitors That Are Selective for the d746 â€ 750/T790M/C797S Mutant through Structureâ€Based de Novo Design. Angewandte Chemie - International Edition, 2017, 56, 7634-7638.	7.2	58
35	Metal-free photocatalytic trifluoromethylative pyridylation of unactivated alkenes. Green Chemistry, 2018, 20, 5209-5214.	4.6	58
36	Visible-light-induced cascade radical ring-closure and pyridylation for the synthesis of tetrahydrofurans. Green Chemistry, 2019, 21, 2082-2087.	4.6	57

#	Article	IF	CITATIONS
37	γ-Selective C(sp3)–H amination via controlled migratory hydroamination. Nature Communications, 2021, 12, 5657.	5.8	56
38	Total Synthesis of the Securinega Alkaloid (â^')-Secu'amamine A. Journal of the American Chemical Society, 2008, 130, 7562-7563.	6.6	54
39	Rh(iii)-catalyzed direct C–H/C–H cross-coupling of quinones with arenes assisted by a directing group: identification of carbazole quinones as GSKβ inhibitors. Organic and Biomolecular Chemistry, 2015, 13, 3918-3923.	1.5	54
40	Enantioselective Syntheses of Georgyone, Arborone, and Structural Relatives. Relevance to the Molecular-Level Understanding of Olfaction. Journal of the American Chemical Society, 2006, 128, 1346-1352.	6.6	51
41	Synthesis of heterocyclic-fused benzofurans via C–H functionalization of flavones and coumarins. Chemical Communications, 2013, 49, 8323.	2.2	51
42	Identification of β-Lapachone Analogs as Novel MALT1 Inhibitors To Treat an Aggressive Subtype of Diffuse Large B-Cell Lymphoma. Journal of Medicinal Chemistry, 2015, 58, 8491-8502.	2.9	49
43	Rhodium atalyzed Direct C–H Phosphorylation of (Hetero)arenes Suitable for Lateâ€Stage Functionalization. Advanced Synthesis and Catalysis, 2016, 358, 1296-1301.	2.1	49
44	Ru(II)-Catalyzed Site-Selective Hydroxylation of Flavone and Chromone Derivatives: The Importance of the 5-Hydroxyl Motif for the Inhibition of Aurora Kinases. Organic Letters, 2015, 17, 2550-2553.	2.4	48
45	Palladium(II)â€Catalyzed Tandem Synthesis of Acenes Using Carboxylic Acids as Traceless Directing Groups. Angewandte Chemie - International Edition, 2016, 55, 8652-8655.	7.2	48
46	Synthetic approach to flavanones and flavones via ligand-free palladium(ii)-catalyzed conjugate addition of arylboronic acids to chromones. Organic and Biomolecular Chemistry, 2012, 10, 7305.	1.5	46
47	Discovery of new azaindole-based PI3Kα inhibitors: Apoptotic and antiangiogenic effect on cancer cells. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 7212-7215.	1.0	45
48	Divergent reactivity of sulfinates with pyridinium salts based on one- <i>versus</i> two-electron pathways. Chemical Science, 2021, 12, 6629-6637.	3.7	45
49	Site‣elective Câ^'H Bond Functionalization of Chromones and Coumarins. Asian Journal of Organic Chemistry, 2018, 7, 1136-1150.	1.3	44
50	Allylic Acetals as Acrolein Oxonium Precursors in Tandem Câ^'H Allylation and [3+2] Dipolar Cycloaddition. Angewandte Chemie - International Edition, 2019, 58, 9470-9474.	7.2	44
51	HS-173, a novel phosphatidylinositol 3-kinase (PI3K) inhibitor, has anti-tumor activity through promoting apoptosis and inhibiting angiogenesis. Cancer Letters, 2013, 328, 152-159.	3.2	42
52	Visibleâ€Lightâ€Induced Cysteineâ€Specific Bioconjugation: Biocompatible Thiol–Ene Click Chemistry. Angewandte Chemie - International Edition, 2020, 59, 22514-22522.	7.2	42
53	Construction of an Advanced Tetracyclic Intermediate for Total Synthesis of the Marine Alkaloid Sarain A. Journal of Organic Chemistry, 2006, 71, 2078-2089.	1.7	41
54	Synthesis of 2-Benzazepines from Benzylamines and MBH Adducts Under Rhodium(III) Catalysis via C(sp ²)–H Functionalization. ACS Catalysis, 2018, 8, 742-746.	5.5	41

#	Article	IF	CITATIONS
55	Visible-Light-Induced C–O Bond Formation for the Construction of Five- and Six-Membered Cyclic Ethers and Lactones. Organic Letters, 2018, 20, 7437-7441.	2.4	40
56	A facile route to isoflavone quinones via the direct cross-coupling of chromones and quinones. Chemical Communications, 2012, 48, 7191.	2.2	39
57	A novel imidazopyridine PI3K inhibitor with anticancer activity in non-small cell lung cancer cells. Oncology Reports, 2013, 30, 863-869.	1.2	39
58	Rh(<scp>iii</scp>)-catalyzed 7-azaindole synthesis via C–H activation/annulative coupling of aminopyridines with alkynes. Chemical Communications, 2015, 51, 11202-11205.	2.2	38
59	Visible‣ightâ€Induced Pyridylation of Remote C(sp 3)â^'H Bonds by Radical Translocation of Nâ€Alkoxypyridinium Salts. Angewandte Chemie, 2018, 130, 15743-15748.	1.6	38
60	Development of New Fluorescent Xanthines as Kinase Inhibitors. Organic Letters, 2010, 12, 1212-1215.	2.4	37
61	Visible Lightâ€Promoted Synthesis of Spiroepoxy Chromanone Derivatives via a Tandem Oxidation/Radical Cyclization/Epoxidation Process. Advanced Synthesis and Catalysis, 2017, 359, 3945-3949.	2.1	37
62	Metal- and oxidant-free S–P(O) bond construction via direct coupling of P(O)H with sulfinic acids. Green Chemistry, 2017, 19, 1005-1013.	4.6	36
63	Computational Design and Discovery of Nanomolar Inhibitors of IκB Kinase β. Journal of the American Chemical Society, 2015, 137, 337-348.	6.6	35
64	HS-173, a novel PI3K inhibitor suppresses EMT and metastasis in pancreatic cancer. Oncotarget, 2016, 7, 78029-78047.	0.8	35
65	HS-116, a novel phosphatidylinositol 3-kinase inhibitor induces apoptosis and suppresses angiogenesis of hepatocellular carcinoma through inhibition of the PI3K/AKT/mTOR pathway. Cancer Letters, 2012, 316, 187-195.	3.2	34
66	A novel imidazopyridine derivative, HS-106, induces apoptosis of breast cancer cells and represses angiogenesis by targeting the PI3K/mTOR pathway. Cancer Letters, 2013, 329, 59-67.	3.2	34
67	Discovery of Picomolar ABL Kinase Inhibitors Equipotent for Wild Type and T315I Mutant via Structure-Based de Novo Design. Journal of the American Chemical Society, 2013, 135, 8227-8237.	6.6	34
68	AgSbF6-controlled diastereodivergence in alkyne hydroarylation: facile access to Z- and E-alkenyl arenes. Chemical Communications, 2014, 50, 8028.	2.2	34
69	Nickel-Catalyzed Regio- and Enantioselective Hydroamination of Unactivated Alkenes Using Carbonyl Directing Groups. Journal of the American Chemical Society, 2022, 144, 9091-9100.	6.6	34
70	HS-1371, a novel kinase inhibitor of RIP3-mediated necroptosis. Experimental and Molecular Medicine, 2018, 50, 1-15.	3.2	33
71	Discovery of New Benzothiazole-Based Inhibitors of Breakpoint Cluster Region-Abelson Kinase Including the T315I Mutant. Journal of Medicinal Chemistry, 2013, 56, 3531-3545.	2.9	32
72	Visible-Light Excitation of Quinolinone-Containing Substrates Enables Divergent Radical Cyclizations. Organic Letters, 2019, 21, 3417-3421.	2.4	31

#	Article	IF	CITATIONS
73	Photocatalytic Vicinal Aminopyridylation of Methyl Ketones by a Double Umpolung Strategy. Angewandte Chemie - International Edition, 2020, 59, 17511-17516.	7.2	31
74	Identification of Novel Inhibitors of Tropomyosin-Related Kinase A through the Structure-Based Virtual Screening with Homology-Modeled Protein Structure. Journal of Chemical Information and Modeling, 2011, 51, 2986-2993.	2.5	30
75	Enantioselective functionalization at the C4 position of pyridinium salts through NHC catalysis. Nature Communications, 2022, 13, 1776.	5.8	30
76	Nocodazole is a Highâ€Affinity Ligand for the Cancerâ€Related Kinases ABL, câ€KIT, BRAF, and MEK. ChemMedChem, 2012, 7, 53-56.	1.6	29
77	Synergistic anticancer activity of HS-173, a novel PI3K inhibitor in combination with Sorafenib against pancreatic cancer cells. Cancer Letters, 2013, 331, 250-261.	3.2	29
78	C2-Selective C–H Methylation of Heterocyclic <i>N</i> -Oxides with Sulfonium Ylides. Organic Letters, 2020, 22, 9004-9009.	2.4	29
79	Tandem Dehydrogenation/Oxidation/Oxidative Cyclization Approach to Wrightiadione and Its Derivatives. Organic Letters, 2015, 17, 3252-3255.	2.4	28
80	Fascaplysin Exerts Anti-Cancer Effects through the Downregulation of Survivin and HIF-1α and Inhibition of VEGFR2 and TRKA. International Journal of Molecular Sciences, 2017, 18, 2074.	1.8	28
81	Reactivity of Morita–Baylis–Hillman Adducts in C–H Functionalization of (Hetero)aryl Nitrones: Access to Bridged Cycles and Carbazoles. Organic Letters, 2018, 20, 4632-4636.	2.4	28
82	Stereoselective construction of sterically hindered oxaspirocycles <i>via</i> chiral bidentate directing group-mediated C(sp ³)–O bond formation. Chemical Science, 2018, 9, 1473-1480.	3.7	28
83	Anti-cancer effects of a novel compound HS-113 on cell growth, apoptosis, and angiogenesis in human hepatocellular carcinoma cells. Cancer Letters, 2011, 306, 190-196.	3.2	27
84	Palladiumâ€Catalyzed Divergent Arylation with Triazolopyridines: Oneâ€Pot Synthesis of 6â€Arylâ€2â€Î±â€styrylpyridines. Advanced Synthesis and Catalysis, 2016, 358, 958-964.	2.1	27
85	Direct C–H cross-coupling approach to heteroaryl coumarins. Organic and Biomolecular Chemistry, 2012, 10, 2692.	1.5	26
86	Rh ^I atalyzed Site‣elective Decarbonylative Alkenylation and Arylation of Quinolones under Chelation Assistance. European Journal of Organic Chemistry, 2015, 2015, 3671-3678.	1.2	26
87	Efficient Synthesis of Frutinoneâ€A and Its Derivatives through Palladium atalyzed CH Activation/Carbonylation. Chemistry - an Asian Journal, 2015, 10, 878-881.	1.7	25
88	Regio―and Stereoselective Functionalization Enabled by Bidentate Directing Groups. Chemical Record, 2021, 21, 3613-3627.	2.9	25
89	Regioselective Câ^'H Functionalization of Heteroarene <i>N</i> â€Oxides Enabled by a Traceless Nucleophile. Angewandte Chemie - International Edition, 2020, 59, 22675-22683.	7.2	24
90	Discovery of new aminopyrimidine-based phosphoinositide 3-kinase beta (PI3Kβ) inhibitors with selectivity over PI3Kα. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6977-6981.	1.0	23

#	Article	IF	CITATIONS
91	Regioselective Crossâ€Dehydrogenative Coupling of Chromones and Nonâ€Activated Arenes. Asian Journal of Organic Chemistry, 2012, 1, 47-50.	1.3	23
92	Visibleâ€Lightâ€Induced ortho â€Selective Migration on Pyridyl Ring: Trifluoromethylative Pyridylation of Unactivated Alkenes. Angewandte Chemie, 2020, 132, 287-291.	1.6	23
93	Visibleâ€Lightâ€Enabled Trifluoromethylative Pyridylation of Alkenes from Pyridines and Triflic Anhydride. Angewandte Chemie, 2020, 132, 13481-13486.	1.6	22
94	Construction of the Tricyclo[5.3.1.01,5]undecane System by a Novel Tandem Pinacol Rearrangement-Ene Strategy: A Formal Total Synthesis of (±)-Perhydrohistrionicotoxin. Journal of Organic Chemistry, 2000, 65, 4864-4870.	1.7	21
95	Synthesis of heterocyclic-fused benzopyrans via the Pd(ii)-catalyzed C–H alkenylation/C–O cyclization of flavones and coumarins. Organic and Biomolecular Chemistry, 2014, 12, 3413-3422.	1.5	21
96	A Pd-Catalyzed one-pot dehydrogenative aromatization and ortho-functionalization sequence of N-acetyl enamides. Chemical Communications, 2014, 50, 3227.	2.2	21
97	One-pot synthesis of 2-naphthols from nitrones and MBH adducts <i>via</i> decarboxylative N–O bond cleavage. Organic Chemistry Frontiers, 2018, 5, 3210-3218.	2.3	21
98	Synthesis of Gemcitabine-Threonine Amide Prodrug Effective on Pancreatic Cancer Cells with Improved Pharmacokinetic Properties. Molecules, 2018, 23, 2608.	1.7	21
99	Systematic Computational Design and Identification of Low Picomolar Inhibitors of Aurora Kinase A. Journal of Chemical Information and Modeling, 2018, 58, 700-709.	2.5	20
100	Siteâ€Selective Pyridylic Câ^'H Functionalization by Photocatalytic Radical Cascades. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
101	Application of Fragment-Based de Novo Design to the Discovery of Selective Picomolar Inhibitors of Glycogen Synthase Kinase-3 Beta. Journal of Medicinal Chemistry, 2016, 59, 9018-9034.	2.9	19
102	Visibleâ€Lightâ€Induced C4â€Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
103	Identification of 4-Phenoxyquinoline Based Inhibitors for L1196M Mutant of Anaplastic Lymphoma Kinase by Structure-Based Design. Journal of Medicinal Chemistry, 2017, 60, 9205-9221.	2.9	18
104	One-pot bifunctionalization of unactivated alkenes, P(O)–H compounds, and <i>N</i> -methoxypyridinium salts for the construction of β-pyridyl alkylphosphonates. Organic Chemistry Frontiers, 2018, 5, 2595-2603.	2.3	18
105	Anti-cancer effect of HS-345, a new tropomyosin-related kinase A inhibitor, on human pancreatic cancer. Cancer Letters, 2013, 338, 271-281.	3.2	17
106	Development and Biological Evaluation of Potent and Selective c-KIT ^{D816V} Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 6428-6443.	2.9	17
107	High-throughput chemical screening to discover new modulators of microRNA expression in living cells by using graphene-based biosensor. Scientific Reports, 2018, 8, 11413.	1.6	17
108	Strategic Approach to the Metamorphosis of γ-Lactones to NH γ-Lactams via Reductive Cleavage and C–H Amidation. Organic Letters, 2019, 21, 7099-7103.	2.4	17

#	Article	IF	CITATIONS
109	Photochemical Carbopyridylation of Alkenes Using <i>N</i> â€Alkenoxypyridinium Salts as Bifunctional Reagents. Angewandte Chemie, 2020, 132, 2065-2070.	1.6	17
110	Aminoglycoside antibiotics bind to the influenza A virus RNA promoter. Molecular BioSystems, 2012, 8, 2857.	2.9	16
111	HS-173 as a novel inducer of RIP3-dependent necroptosis in lung cancer. Cancer Letters, 2019, 444, 94-104.	3.2	16
112	Fluorescent phosphoinositide 3-kinase inhibitors suitable for monitoring of intracellular distribution. Bioorganic and Medicinal Chemistry, 2011, 19, 2508-2516.	1.4	15
113	Suppression of tumor proliferation and angiogenesis of hepatocellular carcinoma by HS-104, a novel phosphoinositide 3-kinase inhibitor. Cancer Letters, 2013, 328, 176-187.	3.2	15
114	Strategies to overcome acquired resistances conferred by mutations in the kinase domain of EGFR. Future Medicinal Chemistry, 2016, 8, 853-878.	1.1	15
115	Overcoming metastatic melanoma with BRAF inhibitors. Archives of Pharmacal Research, 2011, 34, 699-701.	2.7	14
116	A novel imidazopyridine analogue as a phosphatidylinositol 3-kinase inhibitor against human breast cancer. Cancer Letters, 2012, 318, 68-75.	3.2	14
117	Structure-based de novo design and biochemical evaluation of novel BRAF kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1027-1030.	1.0	14
118	HS-543 induces apoptosis of Imatinib-resistant chronic myelogenous leukemia with T315I mutation. Oncotarget, 2015, 6, 1507-1518.	0.8	14
119	A copper-mediated cross-coupling approach for the synthesis of 3-heteroaryl quinolone and related analogues. Organic and Biomolecular Chemistry, 2014, 12, 5719-5726.	1.5	13
120	Discovery of Dual Inhibitors for Wild Type and D816V Mutant of c-KIT Kinase through Virtual and Biochemical Screening of Natural Products. Journal of Natural Products, 2016, 79, 293-299.	1.5	13
121	Regiodivergent Ring-Opening Cross-Coupling of Vinyl Aziridines with Phosphorus Nucleophiles: Access to Phosphorus-Containing Amino Acid Derivatives. Organic Letters, 2018, 20, 7571-7575.	2.4	13
122	Visible <scp>Lightâ€Induced</scp> Intramolecular C─O Bond Formation via 1, <scp>5â€Hydrogen</scp> Atom Transfer Strategy. Bulletin of the Korean Chemical Society, 2021, 42, 548-552.	1.0	13
123	Visibleâ€Lightâ€Induced 1,3â€Aminopyridylation of [1.1.1]Propellane with N â€Aminopyridinium Salts. Angewandte Chemie, 2021, 133, 7952-7958.	1.6	13
124	Structure-Based Virtual Screening and De Novo Design of PIM1 Inhibitors with Anticancer Activity from Natural Products. Pharmaceuticals, 2021, 14, 275.	1.7	13
125	Remote C–H Pyridylation of Hydroxamates through Direct Photoexcitation of Oâ€Aryl Oxime Pyridinium Intermediates**. Angewandte Chemie - International Edition, 2021, 60, 26813-26821.	7.2	13
126	Selective and potent small-molecule inhibitors of PI3Ks. Future Medicinal Chemistry, 2014, 6, 737-756.	1.1	12

#	Article	IF	CITATIONS
127	Palladium(II) atalyzed Tandem Synthesis of Acenes Using Carboxylic Acids as Traceless Directing Groups. Angewandte Chemie, 2016, 128, 8794-8797.	1.6	12
128	Discovery of fluorescent 3-heteroarylcoumarin derivatives as novel inhibitors of anaplastic lymphoma kinase. Organic and Biomolecular Chemistry, 2019, 17, 186-194.	1.5	12
129	Photocatalytic Vicinal Aminopyridylation of Methyl Ketones by a Double Umpolung Strategy. Angewandte Chemie, 2020, 132, 17664-17669.	1.6	12
130	IPD-196, a novel phosphatidylinositol 3-kinase inhibitor with potent anticancer activity against hepatocellular carcinoma. Cancer Letters, 2013, 329, 99-108.	3.2	11
131	HS-438, a new inhibitor of Imatinib-resistant BCR-ABL T315I mutation in chronic myeloid leukemia. Cancer Letters, 2014, 348, 50-60.	3.2	11
132	Anticancer activity of HS-527, a novel inhibitor targeting PI3-kinase in human pancreatic cancer cells. Cancer Letters, 2014, 353, 68-77.	3.2	11
133	Construction of the tricyclo[5.3.1.01,5]undecane system by a tandem pinacol rearrangement–ene strategy: a formal synthesis of (±)-perhydrohistrionicotoxin. Chemical Communications, 1997, , 2263-2264.	2.2	10
134	A novel PI3K inhibitor alleviates fibrotic responses in fibroblasts derived from Peyronie's plaques. International Journal of Oncology, 2013, 42, 2001-2008.	1.4	10
135	HS-104, a PI3K inhibitor, enhances the anticancer efficacy of gemcitabine in pancreatic cancer. International Journal of Oncology, 2014, 45, 311-321.	1.4	10
136	Regioselective palladium(<scp>ii</scp>)-catalyzed aerobic oxidative Heck-type C3 alkenylation of sulfocoumarins. Organic Chemistry Frontiers, 2015, 2, 1621-1624.	2.3	10
137	Efficient Synthesis of Anthraquinones from Diaryl Carboxylic Acids via Palladium(II)â€Catalyzed and Visible Lightâ€Mediated Transformations. Advanced Synthesis and Catalysis, 2017, 359, 848-852.	2.1	10
138	Visibleâ€lightâ€induced Reactions Driven by Photochemical Activity of Quinolinone and Coumarin Scaffolds. Asian Journal of Organic Chemistry, 2021, 10, 1012-1023.	1.3	10
139	Discovery of MEK/PI3K dual inhibitor via structure-based virtual screening. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4946-4950.	1.0	9
140	Virtual screening and biochemical evaluation to identify new inhibitors of mammalian target of rapamycin (mTOR). Bioorganic and Medicinal Chemistry Letters, 2014, 24, 835-838.	1.0	9
141	Discovery of wrightiadione as a novel template for the TrkA kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5186-5189.	1.0	9
142	Discovery of Low Micromolar Dual Inhibitors for Wild Type and L1196M Mutant of Anaplastic Lymphoma Kinase through Structure-Based Virtual Screening. Journal of Chemical Information and Modeling, 2016, 56, 802-810.	2.5	9
143	Identification of lead small molecule inhibitors of glycogen synthase kinase-3 beta using a fragment-linking strategy. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5669-5673.	1.0	9
144	Regiodivergent Conversion of Alkenes to Branched or Linear Alkylpyridines. Organic Letters, 2022, 24, 708-713.	2.4	9

#	Article	IF	CITATIONS
145	Structure-based virtual screening approach to the discovery of p38 MAP kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2195-2199.	1.0	8
146	Structure-based design of flavone-based inhibitors of wild-type and T315I mutant of ABL. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4324-4327.	1.0	8
147	Structure-based de novo design and identification of D816V mutant-selective c-KIT inhibitors. Organic and Biomolecular Chemistry, 2014, 12, 4644-4655.	1.5	8
148	Identification of novel BRAF kinase inhibitors with structure-based virtual screening. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5753-5756.	1.0	7
149	Identification of common inhibitors of wild-type and T315I mutant of BCR-ABL through the parallel structure-based virtual screening. Journal of Computer-Aided Molecular Design, 2012, 26, 983-992.	1.3	7
150	Structure-based de novo design and synthesis of aminothiazole-based p38 MAP kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3784-3787.	1.0	7
151	Discovery of ECF Receptor Inhibitors That Are Selective for the d746 â€ 750/T790M/C797S Mutant through Structureâ€Based de Novo Design. Angewandte Chemie, 2017, 129, 7742-7746.	1.6	7
152	Rational Computational Design of Fourth-Generation EGFR Inhibitors to Combat Drug-Resistant Non-Small Cell Lung Cancer. International Journal of Molecular Sciences, 2020, 21, 9323.	1.8	6
153	A human protein hydroxylase that accepts D-residues. Communications Chemistry, 2020, 3, .	2.0	6
154	Visibleâ€Lightâ€Induced Cysteineâ€Specific Bioconjugation: Biocompatible Thiol–Ene Click Chemistry. Angewandte Chemie, 2020, 132, 22703-22711.	1.6	5
155	HS-133, a novel fluorescent phosphatidylinositol 3-kinase inhibitor as a potential imaging and anticancer agent for targeted therapy. Oncotarget, 2014, 5, 10180-10197.	0.8	5
156	Structure-based virtual screening approach to the discovery of phosphoinositide 3-kinase alpha inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2021-2024.	1.0	4
157	Selectivity Enhancement Arising from Interactions at the PI3K Unique Pocket. ChemMedChem, 2012, 7, 1379-1383.	1.6	4
158	Induction of apoptosis and suppression of angiogenesis of hepatocellular carcinoma by HS-159, a novel phosphatidylinositol 3-kinase inhibitor. International Journal of Oncology, 2013, 43, 201-209.	1.4	4
159	Biophysical characterization of sites of host adaptive mutation in the influenza A virus RNA polymerase PB2 RNA-binding domain. International Journal of Biochemistry and Cell Biology, 2014, 53, 237-245.	1.2	4
160	Kinase and GPCR polypharmacological approach for the identification of efficient anticancer medicines. Organic and Biomolecular Chemistry, 2020, 18, 8402-8413.	1.5	4
161	Site‧elective Pyridylic Câ~'H Functionalization by Photocatalytic Radical Cascades. Angewandte Chemie, 0, , .	1.6	4
162	The effect of HS-111, a novel thiazolamine derivative, on apoptosis and angiogenesis of hepatocellular carcinoma cells. Archives of Pharmacal Research, 2012, 35, 747-754.	2.7	3

#	Article	IF	CITATIONS
163	Optimization and biological evaluation of aminopyrimidine-based ll̂ºB kinase l̂² inhibitors with potent anti-inflammatory effects. European Journal of Medicinal Chemistry, 2016, 123, 544-556.	2.6	3
164	Palladium atalyzed Divergent Arylation of Triazolopyridines: A Computational Study. Chemistry - an Asian Journal, 2018, 13, 2505-2510.	1.7	2
165	Regioselective Câ^'H Functionalization of Heteroarene N â€Oxides Enabled by a Traceless Nucleophile. Angewandte Chemie, 2020, 132, 22864-22872.	1.6	2
166	HSâ€146, a novel phosphoinositide 3‑kinase α inhibitor, induces the apoptosis and inhibits the metastatic ability of human breast cancer cells. International Journal of Oncology, 2020, 56, 1509-1520.	1.4	2
167	Visibleâ€Lightâ€Induced C4â€Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angewandte Chemie, 0, , .	1.6	2
168	Allylic Acetals as Acrolein Oxonium Precursors in Tandem Câ^'H Allylation and [3+2] Dipolar Cycloaddition. Angewandte Chemie, 2019, 131, 9570-9574.	1.6	1
169	Frontispiece: Visible‣ightâ€Induced Cysteineâ€Specific Bioconjugation: Biocompatible Thiol–Ene Click Chemistry. Angewandte Chemie - International Edition, 2020, 59, .	7.2	0
170	Frontispiz: Visibleâ€Lightâ€Induced Cysteineâ€Specific Bioconjugation: Biocompatible Thiol–Ene Click Chemistry. Angewandte Chemie, 2020, 132, .	1.6	0
171	Remote C–H Pyridylation of Hydroxamates through Direct Photoexcitation of Oâ€Aryl Oxime Pyridinium Intermediates**. Angewandte Chemie, 2021, 133, 27017.	1.6	0
172	Cover Picture: Siteâ€Selective Pyridylic Câ^'H Functionalization by Photocatalytic Radical Cascades (Angew. Chem. Int. Ed. 29/2022). Angewandte Chemie - International Edition, 2022, 61, .	7.2	0
173	Titelbild: Site‧elective Pyridylic Câ~'H Functionalization by Photocatalytic Radical Cascades (Angew.) Tj ETQq1	1 0.7843	14 rgBT /Ove